期刊文献+

基于反向学习和种群引导的多目标蝗虫优化算法 被引量:4

A multi-objective grasshopper optimization algorithm based on opposition-based learning and population guidance
下载PDF
导出
摘要 为了解决多目标优化的相关问题,提出了求解多目标的蝗虫优化算法,结合单个目标的蝗虫优化算法的搜寻机制、帕累托优势以及拥挤度策略,并在算法中应用种群引导和高斯变异算子,加入了反向学习机制。将所提出的算法与经典的MOPSO、MOCS、MOGOA和MOWOA算法进行了比较,比较结果表明,所提出的改进多目标蝗虫优化算法具有良好的鲁棒性,所求得的解分布更均匀,收敛更快速,是一种有着良好应用前景的多目标进化算法。 In order to solve the related problems of multi-objective optimization,this paper proposes an improved multi-objective grasshopper optimization algorithm,by combining the search mechanism of the single-target grasshopper optimization algorithm and the Pareto advantage and crowding strategy,applying the population guidance and Gaussian mutation operator in the algorithm,and adding the reverse learning mechanism.In the experimental verification,the proposed algorithm is compared with the classic MOPSO,MOCS,MOGOA,MOWOA algorithms.The experimental results show that the improved multi-objective grasshopper optimization algorithm has good robustness,more uniform distribution of the solution,and fast convergence.It is a multi-objective evolutionary algorithm with good application prospects.
作者 邵鸿南 梁倩 王李森 马云鹏 项贤鹏 SHAO Hong-nan;LIANG Qian;WANG Li-sen;MA Yun-peng;XIANG Xian-peng(School of Statistics,Dongbei University of Finance and Economics,Dalian 116000;School of Economics,Harbin University of Commerce,Harbin 150000,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第5期944-950,共7页 Computer Engineering & Science
关键词 反向学习机制 蝗虫优化算法 种群引导 高斯变异 opposition-based learning grasshopper optimization algorithm population guidance Gaussian mutation
  • 相关文献

参考文献5

二级参考文献60

  • 1张永平,童小娇,吴复立,严正,倪以信,陈寿孙.基于非线性互补问题函数的半光滑牛顿最优潮流算法[J].中国电机工程学报,2004,24(9):130-135. 被引量:35
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 3张丰田,宋家骅,李鉴,程晓磊.基于混合差异进化优化算法的电力系统无功优化[J].电网技术,2007,31(9):33-37. 被引量:25
  • 4Zhou A, Qu B, Li H. Multiobjective evolutionary algorithms: A survey of the state of the art [J]. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
  • 5He Z, Yen G, Zhang J. Fuzzy based Pareto optimality for many-objective evolutionary algorithms [J]. IEEE Trans on Evolutionary Computation, 2014, 18(2): 269-288.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm= NSGA-lI [J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Yen G G, Leong W F. A multiobjective particle swarm optimizer for constrained optimization [J]. Recent Algorithms and Applications in Swarm Intelligence Research, 2011, 2(1)= 1-23.
  • 8Woldesenbet G, Yen G, Tessema G. Constraint handling in multiobjective evolutionary optimization [J]- IEEE Trans on Evolutionary Computation, 2009, 13(3) : 514-525.
  • 9Qu B, Suganthan P N. Constrained multi qbjective optimization algorithm with an ensemble of constraint handling methods [J]. Engineering Optimization, 2011, 43 (4) 403-416.
  • 10Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition [J]. IEEE Trans on Evolutionary Computation, 2007, 11(6): 712-731.

共引文献50

同被引文献59

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部