期刊文献+

基于超薄层MoS_(2)可饱和吸收体的被动调Q固体Nd∶YAG激光器 被引量:4

Passive Q-switched Solid-state Nd∶YAG Laser Based on Ultrathin MoS_(2) Saturable Absorber
下载PDF
导出
摘要 利用超声剥离法制备了超薄层MoS_(2)纳米片分散液可饱和吸收体,以石英池为容器插入Nd∶YAG激光器的平凹谐振腔中,调节谐振腔镜的位置并增大泵浦功率,成功实现了Nd∶YAG激光器被动调Q脉冲输出。实验结果显示,泵浦功率为2.46 W时,激光器开始调Q运转。泵浦功率为14.55 W时,实现了485 mW的脉冲激光输出功率,重复频率为189.75 kHz,脉冲宽度为1.2μs,对应的最大脉冲能量为2.56μJ。结果表明,超薄层MoS_(2)分散液是适用于1064 nm波长固体激光器被动调Q运转的可饱和吸收体材料。 The ultrathin MoS_(2) nanosheet dispersion saturable absorber is prepared by ultrasonic peeling method.The quartz cell is used as a container and insert into the flat-concave cavity of the Nd∶YAG laser.By adjusting the position of the resonant cavity mirror and increasing the pump power,the passive Q-switched pulse output of the Nd∶YAG laser is successfully achieved.Experimental results show that when the pump power is 2.46 W,the laser starts Q-switched operation.When the pump power is 14.55 W,the maximum pulse laser output power of 485 mW is achieved,the repetition frequency is 189.75 kHz,the pulse width is 1.2μs,and the corresponding maximum pulse energy is 2.56μJ.The results show that the ultrathin MoS_(2) aqueous solution is a saturable absorber material suitable for passive Q-switching operation of 1064 nm wavelength solid-state lasers.
作者 付鑫鹏 付喜宏 姚聪 杨飞 张俊 彭航宇 秦莉 宁永强 FU Xin-peng;FU Xi-hong;YAO Cong;YANG Fei;ZHANG Jun;PENG Hang-yu;QIN Li;NING Yong-qiang(State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Science,Changchun University of Science and Technology,Changchun 130022,China)
出处 《发光学报》 EI CAS CSCD 北大核心 2021年第5期668-673,共6页 Chinese Journal of Luminescence
基金 科技部重点研发计划(2018YFB1107600) 吉林省科技发展计划(20200401060GX,20190302042GX) 发光学及应用国家重点实验室自主创新课题(SKL1-Z-2020-02) 吉林省与中国科学院科技合作高技术产业化专项资金项目(2019SYHZ0017) 广东省重点研发计划(2020B090922003) 国家自然科学基金(61535013)资助项目。
关键词 超薄层MoS_(2)纳米片分散液 可饱和吸收体 Nd∶YAG激光器 被动调Q脉冲 ultrathin MoS_(2)nanosheet dispersion saturable absorber Nd∶YAG laser passive Q-switched pulse
  • 相关文献

参考文献2

二级参考文献78

  • 1Liu, X.; Si, J.; Chang, B.; Xu, G.; Yang, Q.; Pan, Z.; Xie, S.; Ye, P.; Fan, J.; Wan, M. Third-order optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 1999, 74, 164-166.
  • 2Hendry, E., Hale, P. J.; Moger, J.; Savchenko, A. K.; Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401.
  • 3Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987.
  • 4Tomadin, A.; Brida, D.; Cerullo, G.; Ferrari, A. C.; Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, auger processes, and the impact of screening. Phys. Rev. B 2013, 88, 035430.
  • 5Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P. H.; Rozhin, A. G.; Ferrari, A. C. Nanotube-polymer compositesfor ultrafast photonics. Adv. Mater. 2009, 21, 3874-3899.
  • 6Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene A. ACSNano 2010, 4, 803-810.
  • 7Set, S. Y.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In OSA Trends in Optics and Photonics (TOPS), Optical Fiber Communication Conference; Washington, D.C., 2003; p. 44.
  • 8Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009 19, 3077-3083.
  • 9Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630- 17635.
  • 10Dean, J. J.; van Driel, H. M. Second harmonic generation from graphene and graphitic films. Appl. Phys. Lett. 2009, 95, 261910.

共引文献24

同被引文献34

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部