期刊文献+

胃镜下早期胃癌计算机辅助分析研究综述 被引量:4

Review of Computer-Assisted Analysis for Early Gastric Cancer Under Gastroscopy
下载PDF
导出
摘要 胃癌是全世界癌症死亡的第三大主要原因,胃癌的早期检测会对胃癌患者的后期治疗起到至关重要的作用。随着人工智能的发展,可以利用计算机视觉领域的机器学习模型辅助检测早期胃癌,有研究发现一些计算机辅助诊断模型的筛查率接近甚至高于医生。利用计算机辅助诊断可以及早发现胃癌以减少胃癌患者的后期治疗成本。报告了基于机器学习在胃镜下早期胃癌辅助诊断的研究现状,介绍了胃镜下早期胃癌的临床诊断方式,并基于此提出了计算机辅助诊断该疾病的技术路线,分析了不同诊断技术路线的研究特点,为计算机辅助诊断早期胃癌提供不同的切入点。总结了用于早期胃癌检测的机器学习、深度学习、目标检测模型,讨论了其应用于计算机辅助诊断的问题及挑战。 Gastric cancer is the 3rd leading cause of cancer death worldwide,and the early detection of gastric cancer will play a crucial role in the later treatment of patients with gastric cancer.With the development of artificial intelligence,machine learning models in the field of computer vision can be utilized to assist in the early detection of gastric cancer,and some studies have found that the screening rate of some computer-assisted diagnostic models is close to or even higher than that of doctors.The early detection of gastric cancer using computer-assisted diagnosis can reduce the later treatment costs for patients with gastric cancer.This paper reports the current state of research on the assisted diagnosis of early gastric cancer under gastroscopy based on machine learning,introduces the clinical diagnostic modalities of early gastric cancer under gastroscopy and puts forward a diagnostic technology route for the computer-assisted diagnosis of the disease,analyzes the research characteristics of different diagnostic technology routes,and provides different entry points for computerassisted diagnosis of early gastric cancer.This paper summarizes the models of machine learning,deep learning,target detection for early gastric cancer detection,and discusses the problems and challenges of their application to computerassisted diagnosis.
作者 温庭栋 宋文爱 赵莉 孙雪 杨吉江 王青 雷毅 WEN Tingdong;SONG Wen’ai;ZHAO Li;SUN Xue;YANG Jijiang;WANG Qing;LEI Yi(College of Software,North University of China,Taiyuan 030051,China;National Center of Gerontology,Institute of Geriatric Medicine,Chinese Academy of Medical Sciences,Department of Gastroenterology Beijing Hospital,Beijing 100730,China;National Center of Gerontology,Institute of Geriatric Medicine,Chinese Academy of Medical Sciences,VIP Department and Family Medicine Department Beijing Hospital,Beijing 100730,China;Department of Automation,Tsinghua University,Beijing 100084,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第10期39-47,共9页 Computer Engineering and Applications
基金 北京医院临床研究121工程资助项目(BJ-2019-199)。
关键词 早期胃癌 机器学习 深度学习 目标检测 early gastric cancer machine learning deep learning object detection
  • 相关文献

参考文献4

二级参考文献38

  • 1杜世宏,秦其明,王桥.空间关系及其应用[J].地学前缘,2006,13(3):69-80. 被引量:24
  • 2余肖生,周宁,张芳芳.基于KNN的图像自动分类模型研究[J].中国图书馆学报,2007,33(1):74-76. 被引量:8
  • 3董立岩,苑森淼,刘光远,贾书洪.基于贝叶斯分类器的图像分类[J].吉林大学学报(理学版),2007,45(2):249-253. 被引量:30
  • 4孙即祥.图像处理[M].北京:科学出版社,2010.
  • 5UNSER M. Texture Classification and Segmentation Using Wavelet Frames [J]. IEEE Trans. On Image Processing, 1995,11(4).-1 549-1 560.
  • 6MAO J,ANIL K. JAIN. Artificial Neural Networks for Feature Extraction andMultivariate Data Projection [J]. IEEE Trans. on Neural Networks,1999(6):296- 317.
  • 7FENG H Y,PAVLIDIS T. Decomposition of Polygons Into Simpler Components:Feature Extraction for Syntactic Pat tern Recognition [J]. IEEE Transaction on Computers, 1975,24:636 -650.
  • 8CLAUSIDA, ZHAO Yong-ping. Grey Level Co-Occurrence Integrated Algorithm (GLC IA) :A Superior Computational Meth- od to Determine Co-Occurrence Probability Texture Features [J]. Computers & Geosciences, 2003,29 (7) : 837 - 850.
  • 9HARALICK R M, SHANMUGAN K, DINSTEIN I. Texture Features for Image Classification [J]. IEEE Trans. on Systems, Man and Cybernetics, 1973,3 (6) : 610 - 621.
  • 10BALLARD D H. Generalizing the Hough Transform to Detect Arbitrary Shapes [J]. Pattern Recognition, 1981 (1): 111 - 122.

共引文献87

同被引文献21

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部