期刊文献+

基于LSTM网络学习的电动汽车实时能量管理优化策略 被引量:4

Real⁃time energy management optimization strategy of electric vehicle based on LSTM network learning
下载PDF
导出
摘要 对电动汽车负荷进行有序控制可以改善地区电网的负荷特性,降低充电成本。由于无法预测未来电动汽车的准确接入时间及充电需求,故无法对电动汽车的接入进行全局最优安排。针对该问题,提出基于深度长短期记忆神经网络的电动汽车实时能量管理系统及优化策略。首先构建了包括电网层、区域能量管理系统和充电站能量管理系统的电动汽车3层管理架构,对大规模电动汽车进行分层分区管理;然后提出了基于深度长短期记忆神经网络的区-站两级交互策略,利用历史负荷信息求解出的历史最优解训练学习网络,用以指导新的实时优化;提出的策略在保证用户充电需求的前提下,能够进一步降低充电成本,改善区域负荷峰谷特性。最后,通过仿真算例验证了提出的分层架构及管理策略的有效性及优越性。 Orderly control of electric vehicle load can im⁃prove load characteristics of the regional power grid and reduce the charging cost.Since it is impossible to predict the accurate access time and charging demand of electric vehicles in the future,it is im⁃possible to make a global optimal arrangement for the access of electric vehicles.Aiming at this problem,a real⁃time energy man⁃agement system and optimization strategy for electric vehicles based on deep long short⁃term memory neural networks are pro⁃posed.Firstly,a three⁃tier management architecture for electric ve⁃hicles including the grid layer,regional energy management system and charging station energy management system is constructed,and large⁃scale electric vehicles are managed hierarchically and parti⁃tioned;Then a district⁃station two⁃level interaction strategy based on deep long short⁃term memory neural network is proposed,and the historical optimal solution obtained by historical load informa⁃tion is used to train the learning network to guide new real⁃time opti⁃mization;The proposed strategy can further reduce the charging cost and improve the area under the premise of ensuring the users’charging demand load peak and valley characteristics.Finally,a simulation example verifies the effectiveness and superiority of the proposed layered architecture and management strategy.
作者 洪晨威 刘其辉 张怡冰 HONG Chenwei;LIU Qihui;ZHANG Yibing(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China;State Grid Beijing Electric Power Co.,Ltd.,Beijing 100031,China)
出处 《电力需求侧管理》 2021年第3期13-18,共6页 Power Demand Side Management
基金 国家重点研发计划基金资助项目(2016YFB0101900)。
关键词 电动汽车 分层架构 长短期记忆神经网络 深度学习 有序调度策略 electric vehicle hierarchical architecture LSTM deep learning ordered scheduling strategy
  • 相关文献

参考文献11

二级参考文献133

共引文献1427

同被引文献68

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部