期刊文献+

基于多数据源与机器学习的药物副作用预测 被引量:1

Prediction of Drug Side Effects Based on Multiple Data Sources and Machine Learning
下载PDF
导出
摘要 药物不良反应是疾病治疗过程中一个非常重要的考虑因素,为了指导医生有效避免或减少药物不良反应,提出一种基于多数据源与机器学习的药物副作用预测方法,将患病前后和用药前后基因的表达量变化情况作为解释变量,利用随机森林算法对药物副作用进行预测,发现使用随机森林算法针对5种副作用的测试结果都优于传统的K近邻算法,其中副作用皮疹的测试准确率达到90.24%,相比K近邻算法提升了31.70%。结果表明,利用基因表达量变化情况这一特征可以很好地预测药物副作用,同时也说明副作用的发生和基因表达量变化情况具有很强的相关性。 Adverse drug reactions(ADRs)is a very important factor in the treatment of diseases.In order to guide doctors to effectively avoid or reduce the occurrence of ADRs,we propose a drug side effect prediction method based on multiple data sources and machine learning.We use random forest algorithm to predict drug side effects by taking the changes in gene expression before and after disease and medication as explanatory variables.We found that the random forest algorithm was superior to the previous KNN algorithm in the tests of five side effects,among which the accuracy of side effect rash testreached 90.24%,which was 31.70%higher than the KNN algorithm.The results of the model show that the variation of gene expression can be used to predict the side effects of drugs,and that the occurrence of side effects has a strong correlation with the variation of gene expression.
作者 杜瑶 DU Yao(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《软件导刊》 2021年第5期39-43,共5页 Software Guide
关键词 副作用预测 基因表达 机器学习 多数据源 side effect prediction gene expression machine learning multiple data sources
  • 相关文献

参考文献4

二级参考文献56

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 3林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 4王仲谋,数据仓库—客户/服务器计算指南,1997年
  • 5Cooper G. Computational complexity of probablitisitie inference using Bayesian belief networks. Artificial Intelligence, 1990,42:393-405
  • 6Friedman N,GeigerD, Goldszmidt M. Bayesian network Classifiers. Maching Learnig, 1997, 29:131-163
  • 7Chickering D M. Learning Bayesian networks is NP-complete[A].Leamingfrom Data:AI and Statistics V[M]. New York: Springer, 1996. 121-130
  • 8Harry Z, Sheng S. Learning Weighted Naive Bayes with Accurate Ranking. In: Fourth IEEE International Conference on Data Mining (ICDM'04), 2004. 567-570
  • 9Pawlak Z. Rough set. International Journal oI Computer and Information Sciences, 1982,11(5):341-356
  • 10Wang Guoyin, Zhao Jun, An Jiujiang, Wu Yu. A Comparative Study of Algebra Viewpoint and Information Viewpoint in Attribute Reduction,Fundamenta Informaticae, 2005, 68(3): 289-301

共引文献844

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部