期刊文献+

基于小波变换的心电信号特征提取 被引量:8

Feature Extraction of ECG Signal Based on Wavelet Transform
下载PDF
导出
摘要 心电信号中的QRS波群及T波包含心脏活动的重要信息,对心脏疾病的预防和治疗具有重要意义。为正确高效地提取出心电信号中的这些特征点,提出一种基于小波变换的QRST波检测方法。采用Coiflet4小波基对心电信号进行8层分解,用软阈值法去除心电信号中的噪声,采用改进的自适应差分阈值法对心电信号中的特征点进行检测。研究表明,该方法对于Mitdb中的心电信号,能够准确检测出Q波、R波、S波及T波位置,尤其是检测R波的平均敏感度为99.57%,平均阳性预测正确率为99.74%,具有较高的准确率和实用价值。 The QRS complex and T wave in the ECG signal contain important information about heart activity,which is of great significance for the prevention and treatment of heart diseases.In order to extract these characteristic points in the ECG signal correctly and efficiently,a detection method to detect QRST waves based on wavelet transform is proposed.The Coiflet4 wavelet base is used to decompose the ECG signal in 8 layers,the soft threshold method is used to remove the noise in the ECG signal,and the improved adaptive differential threshold method is used to detect the characteristic points in the ECG signal.The research results show that,for the ECG signal in mitdb,the Q wave,R wave,S wave and T wave positions can be detected accurately,especially the average sensitivity of detecting R wave is 99.57%,and the average positive prediction accuracy is 99.74%,which has relatively high practical value.
作者 顾秀秀 朱明亮 王璐 史洪玮 GU Xiu-xiu;ZHU Ming-liang;WANG Lu;SHI Hong-wei(School of Information Engineering,Suqian College,Suqian 223800,China)
出处 《软件导刊》 2021年第5期77-81,共5页 Software Guide
基金 教育部产学研合作协同育人项目(201901256026) 宿迁市科技计划自然科学资金项目(K202004)。
关键词 心电信号 小波变换 软阈值 差分阈值 特征提取 ECG signal wavelet transform soft threshold differential threshold feature extraction
  • 相关文献

参考文献10

二级参考文献85

共引文献2146

同被引文献54

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部