期刊文献+

应用型高光谱影像卷积神经网络分类方法 被引量:1

An Applied Hyperspectral Image Classification Method Based on Convolutional Neural Network
下载PDF
导出
摘要 针对生产任务中常用的卫星高光谱数据空间分辨率不高、地物复杂的特点,提出一种实用性和灵活性较强、效率较高、不依赖空间信息的分类方法。对高光谱遥感影像数据进行分析,依据其光谱信息丰富,但在复杂地物中空间特征不足的实际情况,采用离散采样的方法,充分利用质量较好的样本点进行特征提取。对传统卷积神经网络进行改进,通过卷积层与池化层的重组等措施,使其更充分地利用地物的光谱特性。该方法在珠海一号高光谱影像上实现了对地物的有效分类。 Aimed at the characteristics of low spatial resolution and complex ground features of satellite hyperspectral data commonly used in production tasks,a practical,flexible,efficient classification method which is independent of spatial information is proposed in the paper.The analysis of hyperspectral remote sensing image data is based on the fact that the spectral information is rich,but the spatial features are not enough in the complex features.The method of discrete sampling is adopted to make full use of the good quality sample points to extract the features.The traditional convolutional neural network is improved to make full use of the spectral characteristics of ground objects through the recombination of convolutional layer and pooled layer.Effective classification of ground objects on the Zhuhai-1 hyperspectral image has been achieved by this method.
作者 杨晔 龚志辉 刘相云 陈旭东 YANG Ye;GONG Zhihui;LIU Xiangyun;CHEN Xudong(Information Engineering University, Zhengzhou 450001, China)
机构地区 信息工程大学
出处 《测绘科学技术学报》 CSCD 北大核心 2021年第2期160-165,共6页 Journal of Geomatics Science and Technology
关键词 光谱特性 复杂地物 离散采样 卷积神经网络 珠海一号 spectral characteristic complex ground objects discrete sampling convolutional neural network Zhuhai-1
  • 相关文献

参考文献4

二级参考文献35

  • 1余旭初,冯伍法,林丽霞.高光谱──遥感测绘的新机遇[J].测绘科学技术学报,2006,23(2):101-105. 被引量:24
  • 2寻丽娜,方勇华,李新.基于CEM的高光谱图像小目标检测算法[J].光电工程,2007,34(7):18-21. 被引量:11
  • 3DOPIDO INMACULADA,ZORTEA MACIEL, VILLA ALBER- TO ,et al. Unmixing Prior to Supervised Classification of Re- motely Sensed Hyperspectral Images [ J ]. IEEE GEOSCIENCE AND REMOTE SENSING LETYERS,2011,8(4) :760-764.
  • 4HARSANYI J C. Detection and Classification of Subpixel Spec- tral Signatures in Hyperspectral Image Sequences [ D ]. Balti- more : University Of Maryland Baltimore County, 1993 : 81-100.
  • 5CHANG C I, DANTEL HEINZ C. Constrined Subpixel Target Detection For Remotely Sensed Imagery [ J ]. IEEE Transac- tions on Geoscience and Remote Sensing, 2000,38 (3) : 1144- 1160.
  • 6CHANG C I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification[ M ]. New York : Kluwer, 2003 : 54-55.
  • 7余旭初,冯五法,杨国鹏,等.高光谱影像分析与应用[M].北京:科学出版社,2013.
  • 8谭熊.联合光谱和空间特征的高光谱影像分类技术研究[D].郑州:信息工程大学,2014.
  • 9CSAT() L. Gaussian Processes iterative Sparse ApproximationsED~. Aston: Aston University, 2002.
  • 10LAWRENCE N D, SEEGER M, HERBRICH R. The.Informative Vector Machine: A Practical Probabilistic Alternative to the Support Vector MachineFR~. Sheffield, UK: Technical Report, Department of Computer Science, 2005.

共引文献96

同被引文献24

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部