期刊文献+

基于层次分类法的弥漫大B细胞淋巴瘤的疾病进展阶段多分类预测研究 被引量:1

Multi-classification Prediction of Diffuse Large B-cell Lymphoma Disease Progression based on Hierarchical Classification
下载PDF
导出
摘要 目的对山西省某医院2011-2017年确诊为弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma, DLBCL)患者进行疾病进展阶段多分类预测,为患者是否需要及时转为二线挽救治疗或放疗等治疗手段的选择提供参考。方法用层次分类法将三分类的疾病进展阶段进行两层二分类,分别进行变量筛选后,用SMOTE过采样处理数据中的类别不平衡问题,然后使用SVM、BP神经网络、随机森林等单分类器模型与AdaBoost同型集成和Stacking异型集成方法分别构建两层疾病进展阶段的二分类预测模型,最后分别选择两层中分类性能最优的模型并结合在一起。结果使用经SMOTE平衡后的数据构建的两层分类模型中的SVMboost集成模型,准确率分别为0.951和0.972,模型性能均为最优,因此两层二分类的基分类器均选择SVMboost。结论本研究构建弥漫大B细胞淋巴瘤患者疾病进展阶段的层次多分类预测模型,其中两层分类模型中的SVMboost集成模型性能均为最优,将两层二分类的基分类器结合后,准确率为0.924,高于作为对比的直接多分类模型,为临床工作者的诊断与治疗方案选择提供一定参考。 Objective To investigate the multiclassification prediction of diffuse large b-cell lymphoma(DLBCL)diagnosed in a hospital in Shanxi Province from 2011 to 2017,and to provide reference for whether the patients should be transferred to second-line salvage treatment or radiotherapy.Methods Using hierarchical classification classifies three stages of disease progression on two layers of binary classification,after variable screening,using SMOTE to deal with the class imbalance problems in data,and then use the SVM and BP neural network and random forest type single classifier model with AdaBoost integration and Stacking heterotype integration method to build two layers which the binary classification prediction model of disease progression,finally choose two layer classification performance of the optimal model and unifies in together.Results The accuracy of SVMboost integrated model in two-layer classification model was 0.951 and 0.972,respectively,and the performance of the model was optimal.Therefore,SVMboost was selected as the base classifier for two-layer dichotomy.Conclusion This study constructs a hierarchical multi classification prediction model for the disease progression stage of patients with diffuse large B-cell lymphoma.The performance of the svmboost integrated model in the two-layer classification model is the best.The accuracy of the combination of the two-layer two classification base classifiers is 0.924,which is higher than the classical direct multi classification models as a comparison.It is the choice of diagnosis and treatment scheme for clinical workers Provide some reference.
作者 黄雪倩 张岩波 王蕾 郑楚楚 余红梅 范双龙 阳桢寰 邢蒙 赵志强 罗艳虹 Huang Xueqian;Zhang Yanbo;Wang Lei(Department of Health Statistics,School of Public Health,Shanxi Medical University,030000,Taiyua)
出处 《中国卫生统计》 CSCD 北大核心 2021年第2期167-170,176,共5页 Chinese Journal of Health Statistics
基金 国家自然科学基金青年科学基金(81502897) 山西医科大学博士启动基金(BS2017029) 国家自然科学基金面上项目(81973154)。
关键词 弥漫大B细胞淋巴瘤 层次分类法 多分类 不平衡数据 Diffuse large B-cell lymphoma Hierarchical classification Multi-classification Imbalanced data
  • 相关文献

参考文献9

二级参考文献130

  • 1张国宣,孔锐,施泽生,郭立,刘士建,薛明东.基于核聚类方法的多层次支持向量机分类树[J].控制与决策,2004,19(11):1305-1307. 被引量:3
  • 2张国云,章兢.一种新的分裂层次聚类SVM多值分类器[J].控制与决策,2005,20(8):931-934. 被引量:9
  • 3高小榕,杨福生.采用同伦BP算法进行多层前向网络的训练[J].计算机学报,1996,19(9):687-694. 被引量:37
  • 4王其文 吕景峰 等.人工神经网络与线性回归的比较[J].决策与决策支持系统,1993,3(3):205-210.
  • 5Wang H, Guo XH, Jia ZW et al. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image[ J]. European Journal of Radiology, 2010, 74:124 -129.
  • 6Guo XH, Sun Tao, Wu HF, et al. Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT[ J]. World Academy of Science, Engineering and Technology, 2010,71 : 333 -337.
  • 7Francisco FN,Cesar HM, Pedro AG. A dynamic over-sampling procedure based on sensitivity or multi-class problems [ J ]. Pattern Recognition, 2011, 44 : 1821 - 1833.
  • 8Alberto F, Maria J, Francisco H. On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets [J]. Expert Systems with Applications, 2009, 36 : 9805 -9812.
  • 9Chawla NV, Bowyer KW, Hall LO, et al. Smote: synthetic minority over-sampling technique [ J ], Journal of Artificial Intelligence Research, 2002,16 : 321 -357.
  • 10Korl AD, le Gessie S, Snijder S, et al. Primary extranodal non- Hodgkin' s lymphoma (NHL): the impact of alternative defini- tions tested in the Comprehensive Cancer Centre West popula- tion-based NHL registry. Ann Oncol, 2003, 14:131-139.

共引文献362

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部