期刊文献+

注意力引导的三维卷积网络用于遥感场景变化检测 被引量:5

Attention Guided 3D ConvNet for Aerial Scene Change Detection
下载PDF
导出
摘要 场景级变化检测策略可以容忍高分遥感影像的大量噪声,进而从语义层级更准确地描述遥感图像在前后时相的变化,为高分辨率影像变化检测提供了可能。本文提出了一种注意力引导的三维卷积神经网络用于高分遥感影像场景变化检测的方法。首先构建一个在AlexNet基础上进行简化的三维卷积网络,然后加入一个语义注意力模块来进一步提取地表覆盖变化显著的候选判别区域;最后输入分类层得到分类结果,整个框架以端对端、可训练的方式进行组织,直接由双时相场景切片通过卷积网络得到变化检测结果。为评估场景级变化检测方法性能,本文制作了一个语义级高分遥感影像场景变化检测数据集,在该数据集上的实验结果显示本文方法变化检测的准确率高于相关方法,验证了方法的有效性,初步展示了基于深度学习的场景级遥感变化检测的发展前景。 With high tolerance to the great amount of noise and precise depiction of im-age changes in high resolution remote sensing images(HRRSI),scene-level change detection strategy makes it possible to detect changes in HRRSI.In this paper,we propose an at-tention guided 3D ConvNet for HRRSI change detection.Firstly,we develop a simplified 3D AlexNet to extract convolutional features.Then we add a semantic attention mod-ule(SAM)to further extract the discriminative regions which strongly relate to land-cover changes.Finally,the refined features are fed into a classification layer to organize the whole framework in an end-to-end trainable manner.Scenes in different phases are put into the convolutional neural network(CNN)with the result of change detection.In order to eval-uate the performance of scene level change detection methods,we create a public semantic level high resolution remote sensing images change detection benchmark.Experimental results on this dataset are obviously better than other related methods,demonstrate the effectiveness of our method,and show the prospect of scene level remote sensing change detection based on deep learning.
作者 张涵 秦昆 毕奇 张晔 许凯 ZHANG Han;QIN Kun;BI Qi;ZHANG Ye;XU Kai(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,Hubei,China;School of Geography and Information Engineering,China University of Geosciences,Wuhan 430074,Hubei,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2021年第2期272-280,共9页 Journal of Applied Sciences
基金 国家重点研发计划(No.2016YFB0502600) 国家自然科学基金(No.41801265)资助。
关键词 场景级变化检测 语义注意力模块 三维卷积神经网络 高分遥感解译 场景变化检测数据集 scene-level change detection semantic attention module 3D ConvNet high resolution remote sensing interpretation scene-level change detection benchmark
  • 相关文献

参考文献6

二级参考文献31

  • 1杨耘,王树根,邱丹丹.基于规则的高分辨率影像港口识别模型[J].测绘信息与工程,2005,30(5):40-42. 被引量:8
  • 2Zhang Y.Optimisation of Building Detection in Satellite Images By Combining Multispectral Classification and Texture Filtering[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:50-60.
  • 3Myint S W,Lam N S N,Tylor J.An Evaluation of Four Different Wavelet Decomposition Procedures for Spatial Feature Discrimination Within and Around Urban Areas[J].Transactions in GIS,2002,6(4):403-429.
  • 4Benediktsson J A,Palmason J A,Sveinsson J R.Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):480-491.
  • 5Segl K,Reossner S,Heiden U,et al.Fusion of Spectral and Shape Features for Identification of Urban Surface Cover Types Using Reflective and Thermal Hyperspectral Data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2003,58:99-112.
  • 6Acqua F D,Gamba P,Ferrari A,et al.Exploiting Spectral and Spatial Information in Hyperspectral Urban Data With High Resolution[J].IEEE Transactions on Geoscience and Remote Sensing Letters,2004,1(4):322-326.
  • 7Foody G M,Mathur A.A Relative Evaluation of Multiclass Image Classification by Support Vector Machines[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6):1335-1343.
  • 8Changshan Wu,Alan T. Murray.Estimating impervious surface distribution by spectral mixture analysis[J].Remote Sensing of Environment.2002(4)
  • 9Xin Huang,Liangpei Zhang.A multiscale urban complexity index based on 3D wavelet transform for spectral–spatial feature extraction and classification: an evaluation on the 8-channel WorldView-2 imagery[J].International Journal of Remote Sensing.2012(8)
  • 10Dengsheng Lu,Scott Hetrick,Emilio Moran.Impervious surface mapping with Quickbird imagery[J].International Journal of Remote Sensing.2011(9)

共引文献139

同被引文献114

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部