摘要
考虑预测变量p的数量超过样本大小n的高维稀疏精度矩阵.近年来,由于高维稀疏精度矩阵估计变得越来越流行,所以文章专注于计算正则化路径,或者在整个正则化参数范围内解决优化问题.首先使用定义在正定性约束下最小化Lasso目标函数精度矩阵估计器,然后对稀疏精度矩阵使用乘数交替方向法(ADMM)算法正则化路径,以快速估计与正则化路径相关联的稀疏模型的序列,从而进行统计模型选择.数值结果表明,该方法能够快速勾勒出稀疏模型的序列,不仅克服了计算时间的问题且易于实现,并且可以在较高分辨率下探索模型空间.
This paper considers high-dimensional sparse precision matrix in which the number of predictors p exceeds the sample size n.High-dimensional sparse precision matrix estimation has become more and more popular in the recently years,but we focus on computing regularization paths,or solving the optimization problem over the full range of regularization parameters.We first benefit from a precision matrix estimator which is defined as the minimizer of the Lasso under a positivedefiniteness constraint.Then we aim to use the alternating direction method of multipliers(ADMM) algorithmic regularization path for sparse precision matrix to quickly approximate the sequence of sparse models associated with regularization paths for the purposes of statistical model selection.Numerical results show that our method can quickly outline the sequence of sparse models,and this approach not only overcomes the computing time issue,but also easies implementation and explores the model space at a fine resolution.
作者
王冠鹏
田万
胡涛
WANG Guanpeng;TIAN Wan;HU Tao(School of Mathematics Science,Capital Normal University,Beijing 100048)
出处
《系统科学与数学》
CSCD
北大核心
2021年第2期557-565,共9页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金重点项目(12031016)
国家自然科学基金(11671274,11971324)资助课题。
关键词
乘法器的交替方向法
高维精度矩阵
正则化参数
稀疏估计
Alternating direction method of multiplier
high-dimensional precision matrix
regularization parameters
sparse estimation