摘要
通过对露点间接蒸发冷却空调机组的实际测试,在机组其他条件不变的情况下,仅考虑机组进风口空气的干球温度和含湿量对机组出风口空气的干球温度和含湿量以及机组效率的影响,采用MATLAB软件建立预测露点蒸发冷却器性能的人工神经网络模型。同时对神经网络模型进行检验,使网络预测模型达到预期效果,以完成对模型性能分析和评价。结果表明应用BP神经网络方法对露点间接蒸发冷却空调机组的性能预测是可行的,网络拟合效果总相关性为0.92026。
Through the actual test of the dew point indirect evaporative cooling air conditioning unit,under the condition that the other conditions of the unit are unchanged,only the dry bulb temperature and moisture content of the air inlet air of the unit and the dry bulb temperature and moisture content of the air outlet air of the unit and the For the effect of unit efficiency,MATLAB software is used to establish an artificial neural network model for predicting the performance of dew point evaporative coolers.Combined with the actual test data,the neural network prediction model is tested to make the network prediction model achieve the expected effect to complete the performance analysis and evaluation of the model.The results show that it is feasible to predict the performance of the air conditioning unit using the BP neural network method.The total correlation of the combined effect is 0.92026.
作者
屈悦滢
黄翔
孙铁柱
Qu Yueying;Huang Xiang;Sun Tiezhu(Xi'an Polytechnic University,Xi'an,710048)
出处
《制冷与空调(四川)》
2021年第2期151-156,共6页
Refrigeration and Air Conditioning
基金
西安市科技计划项目(2020KJRC0023)
国家自然科学基金(51676145)
西安工程大学研究生创新基金项目资助(编号:chx2020039)。
关键词
露点间接蒸发冷却
空调机组
神经网络
性能预测
Indirect evaporative cooling with dew point
Air conditioning units
Neural Networks
Performance prediction