期刊文献+

基于融合特征的双通道CNN滚动轴承故障识别 被引量:8

Dual Channel CNN Bearing Fault Identification Based on Fusion Feature
下载PDF
导出
摘要 针对传统的滚动轴承故障识别方法效果较差,对专家经验依赖较高的问题,提出一种基于融合特征的双通道CNN滚动轴承故障识别方法。该方法首先将原始信号采用小波分解方法生成时频图,再将时频图和原始故障信号融合输入到Lenet5网络中,进一步对故障特征进行准确提取,在输出层对数据进行融合,使用Softmax分类器对轴承故障进行分类。实验结果表明,该方法对不同种类的滚动轴承故障的识别均能做出准确的判断,识别准确率高。 The traditional fault identification method has poor effect and relies more on expert experience,so to solve this problem,a twochannel CNN rolling bearing fault identification method based on fusion features was proposed.In this method,the original signal was first generated by Morlet wavelet method,and then the timefrequency diagram and the original fault signal were fused and input into lenet5 network,and the fault features were further accurately extracted.The data were fused at the output layer,and the faults were classified by Softmax classifier.The experimental results show that this method can make accurate judgment on the identification of different kinds of rolling bearing faults with high accuracy.
作者 齐爱玲 李琳 朱亦轩 张广明 QI Ailing;LI Lin;ZHU Yixuan;ZHANG Guangming(College of Computer Science and Technology,Xi’an University of Science and Technology,Xi’an 710054,China;College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 102200,China;College of Mechanical Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
出处 《机械与电子》 2021年第5期15-19,共5页 Machinery & Electronics
基金 国家自然科学基金资助项目(61674121)。
关键词 故障诊断 深度学习 卷积神经网络 时频图 fault diagnosis deep learning CNN the time frequency image
  • 相关文献

参考文献10

二级参考文献60

  • 1张梅军,唐建,陈江海.基于连续小波灰度图的变速箱故障诊断[J].振动.测试与诊断,2007,27(1):65-66. 被引量:7
  • 2Li C J,NDT E Int,1997年,30卷,3期,143页
  • 3陈涛,博士学位论文,1997年
  • 4林京,硕士学位论文,1996年
  • 5耿中行,博士学位论文,1993年
  • 6王宏禹,非平稳随机信号分析与处理,1999年,174页
  • 7林 京,学位论文,1999年
  • 8程正兴(译),小波分析导论,1995年,66页
  • 9耿中行,学位论文,1993年
  • 10Paya B A, Esat I I .Artificaial Neural Network Based Fault Diagnostics of Rotating Machinery Using Wavelet Transforms sa a Preprocessor .Mechanical Systems and Signal Processing 1997 .11(5):751-765.

共引文献947

同被引文献82

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部