期刊文献+

卷积神经网络在数字图像隐写与识别中的应用 被引量:3

Application of Convolution Neural Network in Digital Image Recognition
下载PDF
导出
摘要 基于卷积神经网络设计出一识别数字图像是否进行过隐写的算法。通过CNN中ResNet残差神经网络模型,主要针对于图像隐写算法中的LSB空域隐写算法进行图像隐写分类,ResNet神经网络在“残差块”之间的输出输入之间引入一个跳跃连接,缓解在网络加深过程的梯度消失问题,使得能通过结构的优化和深度的不断加深来提高其网络分类能力,最终基于ResNet建立对LSB隐写图像具有较高准确率的分类模型。 This paper designs an algorithm based on convolutional neural network to recognize whether the digital image has been steganographed.Through the ResNet residual neural network model in CNN,the LSB spatial steganography algorithm in the image steganography algorithm is mainly used for image steganography classification.The ResNet neural network introduces a jump connection between the output and input of the“residual blocks”to alleviate the ladder disappearance problem in the network deepening process,so that the network can be improved through the optimization of the structure and the deepening of the depth.Finally,a classification model based on ResNet with high accuracy for LSB steganographic images is established.
作者 于杰 YU Jie(Xiamen University Tan Kah Kee College,School of Information Science and Technology,Zhangzhou 363105,China)
出处 《通信电源技术》 2021年第2期120-123,共4页 Telecom Power Technology
关键词 残差神经网络 LSB图像隐写算法 分类模型 residual neural network LSB image steganography classification model
  • 相关文献

参考文献6

二级参考文献35

  • 1FRIDRICH J, GOLJIAN M, DU Rui. Lossless data embedding:new paradigm in digital watermarking[J]. EURASIP Journal on Applied Signal Process ,2005,14(2) :253-266.
  • 2TIAN J. Reversible data embedding using a difference expansion[ J]. IEEE Trans in Circuits and Systems for Video Technology, 2003,13 ( 8 ) : 890- 896.
  • 3ADANA M A. Reversible watermarking using difference expansion of quads [ C ]//Proc of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 : 1147- 1156.
  • 4NI Z C, SHI Y, ANSARI N. Reversible data hiding[ J]. IEEE Trans on Circuits and System for Video Technology,2006,16 (3) :354-362.
  • 5LIN C C, HSUEH N L, A lossless data hiding scheme based on three- pixel block difference[ J]. Pattern Recognition,2008,41 (4) :1415- 1425.
  • 6REN Hong-e, CHANG Chun-wu, ZHANG Jian. Image hiding algorithm based on displacement block on odd-even layer[ C ]//Proc of International Workshop on Chaos-Fractal Theories and Applications. 2009 : 186-189.
  • 7PENVY T, BAS P, FRIDRICH J. Steganalysis by subtractive pixel adjacency matrix [ J]. IEEE Transaction on Information Forensics and Security, 2010, 5(2): 215-224.
  • 8LYU S, FARID H. Steganalysis using higher-order image statistics [ J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1): 111-119.
  • 9SHI YUNQING, XUAN GUORONG, ZOU DEKUN, et al. Image steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image, and neural network [ C]//Proceedings of 2005 IEEE International Conference on Multi- media and Expo. Piscataway, NJ: IEEE Press, 2005:269 -272.
  • 10HOLOTYAK T, FRIDRICH J, VOLOSHYNOVSKIY S. Blind sta- tistical steganalysis of additive steganography using wavelet higher or- der statistics [ C]//Proceedings of the 9th IFIP TC-6 TC-11 Confer- ence on Communications and Multimedia Security, LNCS 3677. Berlin: Springer, 2005:273 - 274.

共引文献33

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部