期刊文献+

基于改进混合高斯模型的铁轨异物入侵检测方法 被引量:6

Railway foreign body intrusion detection method based on improved mixed Gaussian model
下载PDF
导出
摘要 针对混合高斯背景模型存在的背景信息易被污染和前景异物目标检测不全的问题,提出了一种基于改进混合高斯模型(GMM)的异物入侵检测算法。该方法结合混合高斯背景模型和小波变换原理对运动目标进行检测。利用小波变换消除设备和噪声导致的背景建模过程产生的干扰点;提出基于邻域平均算法的像素修正算法,进行混合高斯建模,得到最终的背景模型,并通过差分法检测出异物目标。通过现场实验验证,平均前景误检率室外轨道正常环境下降低了57.85%,雪天环境下降低了55.02%,室内环境下降低了59.73%。实验数据表明:所提方法相比传统混合高斯模型方法目标检测完整度较高,检测效果较好。 Aiming at the problem that the background information of mixed Gaussian background model is easily polluted and the target foreign object is incompletely detected,a foreign object intrusion detection algorithm based on improved mixed Gaussian model(GMM)is proposed.The method combines the Gaussian background model and the wavelet transform theory to detect moving target.Wavelet transform is used to eliminate the interference points generated by the background modeling process caused by equipment and noise.A pixel correction algorithm based on neighborhood averaging algorithm is proposed,and mixed Gaussian modeling is earried out,and finally back ground model is obtained.The foreign object target is detected by the difference method.Through field experiments verification,the average prospect false detection rate decreased by 57.85%in normal outdoor track environment,and 55.02%in the snow track environment,and 59.73%in the indoor environment.The experimental data show that the proposed method has better target detection and better detection effect than the traditional hybrid Gaussian model.
作者 宁正 牛宏侠 张肇鑫 NING Zheng;NIU Hongxia;ZHANG Zhaoxin(Automatic Control Institute,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Key Laboratory of Traffic Information Engineering and Control,Lanzhou 730070,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第5期146-149,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61863024) 甘肃省自然科学基金资助项目(1606RJZA002,18JR3RA130) 甘肃省高等学校科研项目(2017A-026,2018C-11,2018A-22)。
关键词 异物检测 像素修正 混合高斯模型 小波变换 邻域平均 foreign object detection pixel correction Gaussian mixture model(GMM) wavelet transform neighborhood average
  • 相关文献

参考文献7

二级参考文献78

  • 1李建桥,张晓冬,邹猛,李豪,王洋,石睿杨.中华绒螯蟹平面运动三维观测和步态分析[J].农业机械学报,2012,43(S1):335-338. 被引量:8
  • 2PAPAGEORGIOU M,BLOSSEVILLE J M,HADJ S H.Modeling and real time control on traffic flow on the southern part of Boulevard Peripherique in Paris (Part I:Modeling,Part II:coordinated on-ramp metering)[J].Transportation Research Part A,1990,24(5):345-370.
  • 3NIU L Q,JIANG N.A moving objects detection algorithm based on improved background subtraction[J].Intelligent Systems Design and Applications,Eighth International Conference on,2008,3:604-607.
  • 4SIGARI M H,MOZAYANI N,POURREZA H R.Fuzzy running average and fuzzy background subtraction:concepts and application[J].International Journal of Computer Science and Network Security,2008,8(2):138-143.
  • 5SURENDRA G,OSAMA M,ROBERT F K M.Detection and classification of vehicles[J].Intelligent Transportation Systems,IEEE Transactions on,2002,3(1):37-47.
  • 6CUCCHIARA R,GRANA C,PICCARDI M,et al.Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,25(10).
  • 7HARITAOGLU I,HARWOOD D,DAVIS L S.W4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,22(8):809-830.
  • 8CAI X,JIANG L,HAO X W,et al.A new region gaussian background model for video surveillance[J].2008 Fourth International Conference on Natural Computation,2008,(6):123-127.
  • 9Peng Suo, Wang Yanjiang. An improved adaptive background modeling algorithm based on Gaussian mixture model [ C ] // Proceedings of ICSP2008. Beijing: IEEE Press,2008 : 1426-1439.
  • 10Power P W, Schoonees J A. Understanding background mixture models for foregrounds segmentation [ C ]//Proceedings of Image and Vision Computing, New Zealand : Auckland ,2002:267-271.

共引文献130

同被引文献64

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部