期刊文献+

基于双树复小波-LSSVM的大坝沉降预测 被引量:2

Dam Settlement Prediction Based on Dual-tree Complex Wavelet and LSSVM
下载PDF
导出
摘要 大坝沉降往往受多种因素影响,对此提出一种基于双树复小波-最小二乘支持向量机(LSSVM)的大坝沉降预测方法。利用双树复小波有效分离出大坝原始序列中隐含的不同频率分量,分析影响大坝沉降的水位、温度与各频率分量的关系,建立相应的LSSVM预测模型。实验表明,该方法有较高的预测精度。 Dam settlement is often affected by many factors,and a dam settlement prediction method based on dual-tree complex wavelet and LSSVM was proposed.The dual-tree complex wavelet was applied to effectively separate the different frequency components in the original sequence of the dam.The relationship between the water level,temperature and the frequency components affecting the dam settlement was analyzed,and the corresponding LSSVM prediction model as established.The experimental results showed that the method has high prediction accuracy.
作者 李飞达 LI Feida(Hubei Urban Construction Vocational and Technological College,Wuhan Hubei 430205,China)
出处 《北京测绘》 2021年第4期553-556,共4页 Beijing Surveying and Mapping
关键词 大坝沉降 双树复小波变换(DTCWT) 最小二乘支持向量机(LSSVM) 精度分析 dam settlement Dual-tree Complex Wavelet Transform(DTCWT) Least Square Support Vector Machine(LSSVM) accuracy analysis
  • 相关文献

参考文献10

二级参考文献107

共引文献219

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部