期刊文献+

基于晶体学原理的高效光催化材料的设计与制备 被引量:3

Design and Synthesis of Efficient Photocatalyst Based on the Principal of Crystallography
下载PDF
导出
摘要 光催化技术是一种将太阳能转换为化学能的新技术,基于该技术可利用半导体光催化材料实现光催化分解水制氢、二氧化碳还原制备有机物、降解有机污染物等,是解决未来能源和环境问题的潜在途径之一。然而,作为光催化技术的核心,光催化材料面临着光吸收范围窄、光生载流子分离效率低等问题,这些问题严重制约着光催化能量转化效率及其实际应用。针对制约光催化材料活性的关键科学问题,近年来本课题组从晶体学基本原理出发,基于半导体材料结构与性能的关系,通过对半导体材料的晶体结构、电子结构、微结构参数进行设计与调控,探索制备了一系列具有宽光谱响应范围、高载流子分离效率的新型高效光催化材料,为设计制备新型高效光催化材料提供了一些新的设计思路和材料制备方法。 Photocatalysis is a new technique that can convert solar energy into chemical energy.Semiconductor photocatalysts can be used to split water to generate hydrogen,reduce CO2 to organic species,or degrade organic pollutants into eco-friendly species.It has been regarded as one of the most promising strategy to solve energy and environmental problems in the future.However,limited by the poor visible light absorption and inefficient charge separation rate,the photocatalytic activity of the present photocatalysts is still far from the criteria for practical applications.To solve these problems,we have recently developed a series of new strategies based on the basic principle of crystallography to further extend the light absorption range of photocatalysts and stimulate the charge separation inside and at the surface of photocatalysts.And this work may provide some new threads on the design and synthesis of highly efficient photocatalysts.
作者 王泽岩 王朋 刘媛媛 郑昭科 程合锋 黄柏标 WANG Zeyan;WANG Peng;LIU Yuanyuan;ZHENG Zhaoke;CHENG Hefeng;HUANG Baibiao(State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China)
机构地区 山东大学
出处 《人工晶体学报》 CAS 北大核心 2021年第4期685-707,共23页 Journal of Synthetic Crystals
基金 国家重点研发计划(2020YFA0710301) 国家自然科学基金(51972195)。
关键词 光催化材料 晶体学 结构与性能关系 材料设计 制备方法 微结构调控 photocatalyst crystallography structure-property relationship material design synthesis method microstructure modulation
  • 相关文献

参考文献1

二级参考文献23

  • 1INOUE T, FUJISHIMA A, KONISHI S, HONDA K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature, 1979, 277(5698): 637-638.
  • 2ROY S C, VARGHESE O K, PAULOSE M, GRIMES C A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons [J]. ACS Nano, 2010, 4(3): 1259-1278.
  • 3VARGHESE O K, PAULOSE M, LATEMPA T J, GRIMES C A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels [J]. Nano Lett, 2009, 9(2): 731-737.
  • 4LIU Zhong-shi, JING Xi-ping, WANG Ling-xuan. Luminescence of native defects in Zn2GeO4 [J]. J Electrochem Soc, 2007, 154(6): H500-H506.
  • 5YAN Chao-yi, LEE P S. Crystallographic alignment of ZnO nanorod arrays on zn2geo4 nanocrystals: Promising lattice-matched substrates [J]. J Phys Chem C, 2010, 114(1): 265-268.
  • 6MA Bao-jun, WEN Fu-yu, JIANG Hong-fu, YANG Jin-hui, YING Pin-liang, L1 Can. The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting [J]. Catal Lett, 2010, 134(1): 78-86.
  • 7HUANG Jian-hui, DING Kai-ning, HOU Yi-dong, WANG Xin-chen, FU Xian-zhi. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water [J]. Chem Sus Chem, 2008, 1(12): 1011-1019.
  • 8LIU Qi, ZHOU Yong, TIAN Zhong-ping, CHEN Xiao-yu, GAO Jun, ZOU Zhi-gang. Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation [J]. J Mater Chem, 2012, 22(5): 2033-2038.
  • 9LIU Jin, ZHANG Gao-ke. Template-free synthesis and high photocatalytic activity of hierarchical Zn2GeO4 microspheres [J]. Cryst Eng Comm, 2013, 15(2): 382-389.
  • 10SUN Yan-gang, YU Li, RAO Pin-hua. Rational growth of ternary Zn2GeO4 nanorods and self-assembled hierarchical nanostructures [J] J Cryst Growth, 2012, 347(1): 73-76.

共引文献2

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部