期刊文献+

基于深度学习的学生画像选课系统研究 被引量:2

Study on the Course Selection System of Student Portrait Based on Deep Learning
下载PDF
导出
摘要 目前,深度学习利用自身优势,已在语音识别、图像处理等方面取得了重大的突破与成就。然而,深度学习在选课推荐系统领域的研究与应用还处于早期阶段。考虑传统的选课系统难以考虑到影响学生选课的多因素,本文基于深度学习,结合协同过滤技术在选课系统中的应用,实现对学生的多方面画像,构建出一个实时感知学生喜好变化,且对其进行智能推荐选课的平台,实现从学生到课程的无误差匹配。 At present, deep learning has made great breakthroughs and achievements in speech recognition and image processing bytaking advantage of its own advantages. However, the research and application of deep learning in the field of course selection recommendation system is still in the early stage. Considering the traditional course selection system is difficult to consider the manyfactors influencing students' course selection, based on the deep learning, combining the application of collaborative filtering technology in the course system, realize to the students' various portraits, construct a real-time perception student preferences change,and carries on the intelligent recommended course platform, from students to the course of matching error.
作者 李沁颖 易豪 LI Qin-ying;YI Hao(Jiangxi University of Technology,Nanchang 330098,China)
机构地区 江西科技学院
出处 《电脑知识与技术》 2021年第10期184-186,共3页 Computer Knowledge and Technology
基金 江西科技学院自然科学项目(ZR1904)。
关键词 用户画像技术 深度学习 协同过滤技术 学生选课系统 User Portrait Technology Deep learning Collaborative Filtering Technology Course selection recommendation system
  • 相关文献

参考文献5

二级参考文献36

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2常志玲,周庆敏.基于变精度粗糙集的决策树优化算法研究[J].计算机工程与设计,2006,27(17):3175-3177. 被引量:13
  • 3互动百科:僵尸粉[EB/OL].[2012-02-10].http://www.hudong.eom/wiki/%E5%83%B5%E5%B0%B8%E7%B2%89.
  • 4王鹏.新浪虚假微博用户多达上亿多为内部人员培植以牟利[EB/OL].[2013-02-22].http://teeh.ifeng.com/internet/detail-2013-02/22/22375816_0.shtml.
  • 5Zi Chu, Gianvecchio S, Wang Haining, et al. Detecting auto- mation of twitter accounts: Are you a human, hot, or cyborg?[J]. Dependable and Secure Computing, 2012, 9 (6): 811-824.
  • 6Musa A B. Comparative study on classification performance be- tween support vector machine and logistic regression [J]. In- ternational Journal of Machine Learning and Cybernetics, 2013, 4 (1) :13-24.
  • 7Dou Huili, Wang Guohua, Guo Min. Algorithm of traffic state probability forecast based on logistic regression [C] //In- ternational Conference on Electronics, Information and Commu- nication Engineering. New York: ASME, 2012: 99-104.
  • 8Gupta A, Kumaraguru P. Credibility ranking of tweets during high impact events [C] //Proceedings of the 1st Workshop on Privacy and Security in Online Social Media. New York: ACM, 2012.
  • 9Gupta M, Zhao Peixiang, Han Jiawei. Evaluativ_g event credi- bility on twitter [C] //Proceeddngs of the Twelfth SIAM Interna- tional Conference on Data Minkn4g. Anaheim: Omni Press, 2012: 153-164.
  • 10Wang Xingwei, Sun Jiajia, Li Hongxing, et al. A reverse auction based allocation mechanism in the cloud computing environment [J]. Applied Mathematics & Information Sciences, 2013, 7(1): 75-84.

共引文献34

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部