期刊文献+

数据挖掘技术在银行客户提升中的应用研究 被引量:2

Research on the Application of Data Mining Technology in the Customers Improvement
下载PDF
导出
摘要 随着金融行业竞争愈加剧烈,加之互联网金融的快速发展,银行业利差不断收窄、波动剧烈,使其正面临着全方位的挑战。如何更有效地进行精准营销在很大程度上决定银行是否能在激烈的竞争中脱颖而出。该研究将80%预处理后数据作为训练集,20%的数据用于验证集,利用数据挖掘技术中的Logistic回归和XGBoost两种客户提升模型分别对存量客户数据进行了比对分析。通过对比两种模型的ROC和Lift曲线后发现XGBoost模型提升客户数量更多、预测准确率较高。 With the fiercer competition in the financial sector and the rapid development of Internet finance, the banking industry isfacing comprehensive challenges due to the narrowing and drastic fluctuation of interest rate spreads. How to carry out precisionmarketing effectively determines whether it can stand out in the fierce competition. In this study, 80% of the pre-processed datawas taken as a training data, and 20% of the data was used for a validation set. Through data mining techniques, two customer improvement models including Logistic regression and XGBoost were used for comparative analysis of the existing customer data. Bycomparing the ROC and Lift curves of these two models, it was found that the XGBoost model can simultaneously improve the number of the customers and the accuracy of prediction.
作者 牛亚琴 卢苗苗 NIUYa-qin;LU Miao-miao(School of Artificial Intelligence,North China University of Science and Technology,Tangshan 063210,China)
出处 《电脑知识与技术》 2021年第10期205-206,共2页 Computer Knowledge and Technology
关键词 银行业 数据挖掘 客户提升 banking industry data mining customers improvement
  • 相关文献

参考文献2

二级参考文献12

  • 1任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 2魏孝章,豆增发.一种基于信息增益的K-NN改进算法[J].计算机工程与应用,2007,43(19):188-191. 被引量:9
  • 3HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2001.152-160.
  • 4Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to Boosting[J].Journal of Computer and System Sciences,1997,55(1):119~139.
  • 5T.Stokelj,D.Paravan,R.Golob.Short and mid term hydro power plant reservoir inflow forecasting.Power System Technology,2000.Proceedings.PowerCon 2000.International Conference on Volume 2,4-7 Dec.2000Page(s):1107~1112 vol.2
  • 6HANSEN I.K,SALAMON P.Neural Network Ensembles.IEEE Trans on Pattern Analysis and Machine Intelligence[J].1990,12 (10):993~1001.
  • 7Drucker H.Improving regressors using boosting techniques[A].The Fourteenth International Conference On Machine Learning,Morgan Kaufmann,USA,1997.
  • 8Jainak, Robert Pwduin, MAO J. statistical pattern recognition: a re-view. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2000; 22 (1) : 4-37.
  • 9Duan Wei, Lu Xiang-yang. Weighted Naive Bayesian classifier modelbased on information gain. Changsha, China : Intelligent System De-sign and Engineering Application, 2010; (2) :819-822.
  • 10赵蕊.基于WEKA平台的决策树算法设计与实现.武汉:中南大学,2007.

共引文献16

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部