期刊文献+

机器学习分类算法在社区问答系统中的应用

Application of Machine Learning Classification Algorithm in Community Question Answering System
下载PDF
导出
摘要 机器学习被广泛应用到自然语言处理中,社区问答提供了新的有趣的研究方向。在传统问答领域,通过分类算法研究用户交互行为并分析其交互方式,能够促进用户交互与相关岗位结构的开发。在此背景下,针对SemEval语义测评大赛提供的语料库进行了研究,基于KNN算法、随机森林等分类方法对问题的答案进行分类,并对分类结果进行分析和研究。实验结果表明,GBRT和随机森林这两种算法的分类效果最好。 Machine learning is widely used in natural language processing,and community question answering provides a new and interesting research direction.In the field of traditional Question Answering(QA),it can promote the development of user interaction and related post structure by studying user interaction behavior and analyzing its interaction mode through classification algorithm.In this context,this paper studies the corpus provided by SemEval semantic evaluation contest,classifies the answers based on KNN algorithm,random forest and other classification methods,and analyzes and studies the classification results.Experimental results show that GBRT and random forest algorithm are the best.
作者 孙熙然 SUN Xi-ran(China Electronic Technology Corporation,Chengdu 610030,China)
出处 《电脑知识与技术》 2021年第12期195-197,共3页 Computer Knowledge and Technology
关键词 答案分类 自然语言处理 机器学习 随机森林 最邻近节点算法 answer classification natural language processing machine learning nearest neighbor node algorithm
  • 相关文献

参考文献2

二级参考文献42

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2).
  • 4Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2).
  • 5Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8).
  • 6Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1).
  • 7Breiman L. Random Forests[J]. Machine Learning, 2001,45(1).
  • 8Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996.
  • 9Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1).
  • 10Breiman L. Out-of-bag Estimation[EB/OL]. [2010- 06- 30]. http//stat, berkeley, edu/ pub/ users/ breiman / OOB estimation, ps.

共引文献688

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部