期刊文献+

图像生成和深度度量学习的身份感知面部表情识别方法 被引量:3

Identity-Aware Facial Expression Recognition Method Based on Synthesized Images and Deep Metric Learning
下载PDF
导出
摘要 为解决面部表情识别中不同图像的背景信息和身份特征会干扰分类准确率的问题,提出一种将图像合成技术和深度度量学习相结合的身份感知人脸表情识别方法,通过在面部表情识别任务中创建相同身份下的表情组,对人脸图像特征进行比较分类.其结构中对抗生成网络,目标在于学习表情信息并生成表情组;特征提取网络用于将图像转化成为可进行度量学习的特征向量;马氏度量学习网络能够有效地对一对特征值进行比较与分类.该方法在常用面部表情识别数据集CK+和Oulu-CASIA上取得了98.6532%和99.8248%的平均分类准确率,并在Oulu-CASIA数据集上超过当前最好方法10%以上.通过与目前最新方法的比较,证实了该方法在面部表情识别中的有效性和进步性. Facial expression recognition(FER)is a challenging task because the external environment and identity characteristics could affect the classification results directly.To settle down the above-mentioned challenges,this paper proposed an identity-aware facial expression recognition method which combined images synthesis techniques and deep metric learning,and made facial images features compared then classified by creating expression groups under the same identity in FER task.There are three parts in our method.The first part is a generative adversarial network,which aims to learn expression information and synthesis the expression groups.the second part is the feature extraction network,which transforms the image into feature vectors that could be used for metric learning.The third part is Mahalanobis metric learning network that could compare and classify a pair of feature values effectively.The average accuracy of proposed method reached 98.6532%and 99.8248%on two well-known FER dataset named CK+and Oulu-CASIA,with more than 10%higher than the method proposed currently.By comparing with several state-of-the-art methods,the experimental results confirmed that the proposed-method was effective and progressive in FER task.
作者 章思远 肖世明 张蓬 黄伟 Zhang Siyuan;Xiao Shiming;Zhang Peng;Huang Wei(School of Information Engineering,Nanchang University,Nanchang 330031;School of Computer Science,Northwestern Polytechnical University,Xi’an 710072;Informatization Office,Nanchang University,Nanchang 330031)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第5期724-732,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61862043,61971352) 江西省主要学科学术和技术带头人培养计划领军人才项目(20204BCJ22011) 陕西省自然科学基金(2018JM6015).
关键词 深度度量学习 图像生成 身份感知 面部表情识别 deep metric learning image synthesis identity-aware facial expression recognition
  • 相关文献

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部