摘要
河道浅滩变化预测在保护国家和人们的生命、财产以及社会安全稳定方面,在实时防洪、滞洪控制中都将起着非常重要作用。本文利用BP(Back-Propagation)神经网络模型,通过输入特征数据来训练网络,使其具有预测功能。网络测试的结果表明,该网络能够满足预测要求,可以投入实际应用。
The prediction of river shoal changes plays a very important role in protecting the country,people's lives,the property as well as stabilizing social security.Meanwhile,it plays a vital role in real-time flood control and flood detention control.In this paper,BP(Back-Propagation)neural network model is used to train the network by inputting the characteristic data so as to get the prediction function.The network test results show that the network can meet the prediction requirements and can be put into practical application.
作者
王朋
杨居义
Wang Peng;Yang Juyi(School of Computer Science,Sichuan Technology and Business University,Chengdu 611745 China)
出处
《四川工商学院学术新视野》
2021年第1期87-91,共5页
Academic New Vision of Sichuan Technology and Business University