摘要
原子核的β衰变是决定宇宙中从铁到铀重元素合成的关键核过程之一。原子核β衰变的主导核跃迁是Gamow-Teller(GT)跃迁,因此,研究原子核β衰变寿命的关键是准确描述原子核的GT跃迁。描述原子核GT跃迁和β衰变寿命最常用的理论模型之一为无规相位近似(RPA)模型。然而,由于该模型仅考虑了一粒子一空穴激发组态,因此无法给出GT共振宽度,并容易高估β衰变寿命。为了克服上述困难,基于Skyrme密度泛函,发展了包含粒子振动耦合效应的无规相位近似(RPA+PVC)模型。相比于RPA模型,该模型在组态空间进一步考虑了一粒子一空穴和声子的耦合组态,从而包含了超越平均场的多体关联效应。为了推广至开壳原子核的研究,进一步考虑了对关联效应,发展了包含准粒子振动耦合效应的准粒子无规相位近似(QRPA+QPVC)模型。基于上述模型,研究了幻数原子核和超流原子核的GT跃迁、β衰变和β^(+)/电子俘获。研究发现,采用同一组Skyrme相互作用参数SkM^(*),上述模型能够重现实验测量的GT共振宽度和跃迁强度分布,部分解释实验观测的GT跃迁强度压低问题,并同时改进对β衰变寿命的描述。该文针对上述最新研究进展进行了综述,并对将来的发展方向给出展望。
Nuclear β decay is one of the key nuclear processes that determine how the heavy elements from Fe to U in the universe were made.The dominant nuclear process in β-decay is the Gamow-Teller(GT) transition,so the key point for nuclear β-decay study is to describe nuclear GT transition accurately.One of the most widely used nuclear model is random phase approximation(RPA).However,since it only includes one-particle one-hole excitation configurations,this model cannot describe spreading width of GT resonance,and tends to overestimate the β-decay half-lives.To overcome these difficulties,based on Skyrme density functional,the random phase approximation with particle vibration coupling(RPA+PVC) model was developed.Compared to RPA model,it further includes the one-particle one-hole coupled with phonons in its configuration space,which includes many-body correlations beyond mean field approximation.To extend the study to open shell nuclei,the quasiparticle random phase approximation with quasiparticle vibration coupling model(QRPA+QPVC),which includes pairing correlations,was developed.Based on the above models,the GT excitation,β decay,β^(+)/EC of magic nuclei and superfluid nuclei were studied.It is found that with the same Skyrme interaction SkM^(*),the experimental GT width and transition strength profile were well reproduced,the quenching phenomenon was partly explained,and the description ofβ-decay half-lives were improved at the same time.The recent progress of this study is reviewed,and in the meantime the perspectives for future developments are given.
作者
牛一斐
NIU Yifei(School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China)
出处
《原子核物理评论》
CAS
CSCD
北大核心
2020年第3期382-390,共9页
Nuclear Physics Review
基金
中央高校基本科研业务费(lzujbky-2019-11)。