期刊文献+

A Nash Type Result for Divergence Parabolic Equation Related to Hörmander's Vector Fields

原文传递
导出
摘要 In this paper we consider the divergence parabolic equation with bounded and measurable coefficients related to Hörmander's vector fields and establish a Nash type result,i.e.,the local Hölder regularity for weak solutions.After deriving the parabolic Sobolev inequality,(1,1)type Poincaré inequality of Hörmander's vector fields and a De Giorgi type Lemma,the Hölder regularity of weak solutions to the equation is proved based on the estimates of oscillations of solutions and the isomorphism between parabolic Campanato space and parabolic Hölder space.As a consequence,we give the Harnack inequality of weak solutions by showing an extension property of positivity for functions in the De Giorgi class.
出处 《Journal of Partial Differential Equations》 CSCD 2020年第4期341-376,共36页 偏微分方程(英文版)
基金 This work is supported by the National Natural Science Foundation of China(No.1177-1354).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部