摘要
令R^(n+p)为n+p维欧氏空间,而M^(n)为R^(n+p)中n维定向的等距浸入紧致无边子流形.记ξ为M^(n)的单位平均曲率向量场,而H_(i)为M^(n)沿ξ方向的i-平均曲率.如果存在一个整数r 1≤r≤n-1使得H r和H r+1均为非零常数,则M^(n)必全拟脐.
Let R^(n+p)be the(n+p)-dimensional Euclid space and let M^(n)be a compact and oriented n-dimensional sub-manifold of isometric immersion in R^(n+p)without boundary.Denote byξthe unit mean curvature vector field to M^(n)and by H_(i)the i-mean curvature of M^(n)along the directionξ.In this paper we prove that if there exists an integer r 1≤r≤n-1 such that H_(r)and H_(r+1)are both non-zero constants,then M^(n)must be totally quasi-umbilical.
作者
赵斌
周志进
王琪
ZHAO Bin;ZHOU Zhi-jin;WANG Qi(Datang Huayin Zhuzhou Power Generation Co Ltd,Zhuzhou 412005,China;School of Mathematics and Information Science,Guiyang University,Guiyang 550005,China)
出处
《云南师范大学学报(自然科学版)》
2021年第3期20-22,共3页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
贵阳市科技局专项基金资助项目(GYU-KYZ[2019-2020]).
关键词
欧氏空间
紧致无边子流形
平均曲率向量场
i-平均曲率
全拟脐
Euclid space
Compact sub-manifold without boundary
Mean curvature vector field
i-mean curvature
Totally quasi-umbilical