期刊文献+

基于CT征象量化分析的肺结节恶性度分级 被引量:3

Malignancy Grading of Lung Nodules Based on CT Signs Quantization Analysis
下载PDF
导出
摘要 为了提高肺结节恶性度分级的计算精度及可解释性,该文提出一种基于CT征象量化分析的肺结节恶性度分级方法。首先,融合影像组学特征和通过卷积神经网络提取的高阶特征构造分析CT征象所需的特征集;接着,在混合特征集的基础上利用进化搜索机制优化集成学习分类器,实现对7种肺结节征象的识别和量化打分;最后,将7种CT征象的量化打分输入到一个利用差分进化算法优化产生的多分类器,实现肺结节恶性度的分级计算。在实验研究中使用LIDC-IDRI数据集中的2000个肺结节样本进行进化集成学习器和恶性度分级器的训练和测试。实验结果显示对7种CT征象的识别准确率可达0.9642以上,肺结节恶性度分级的准确率为0.8618,精确率为0.8678,召回率为0.8617,F1指标为0.8627。与多个典型算法的比较显示,该文方法不但具有较高的准确率,而且可对相关CT征象进行量化分析,使得对恶性度的分级结果更具可解释性。 In order to improve the accuracy and interpretability of the grading of malignant nodules in the lung,a method is proposed to achieve grading automatically for lung nodules by using(Computed Tomography,CT)signs.Firstly,features sets are extracted of CT signs by combing the radiomics features with the higher-order features extracted by convolutional neural network.Then,the ensemble classifier is optimized by the evolutionary search mechanism based on the mixed feature sets,and it is used to realize quantitative scores for 7 CT signs.Finally,7 quantitative scores are input to the optimized multi-classifier to achieve the grading of malignant nodules in the lung.In the experience,2000 samples of lung nodules in LIDC-IDRI data set are used to train and test the proposed method.The results show that the recognition accuracy of the 7 CT signs can reach more than 0.9642,the grading accuracy reaches 0.8618,the precision reaches 0.8678,the recall reaches 0.8617,and the F1 index reaches 0.8627.With respect to typical algorithms,the proposed method not only has high accuracy,but also can quantitatively analyze the CT signs that make the grade result of malignancy more interpretive.
作者 陈皓 段红柏 郭紫园 强永乾 CHEN Hao;DUAN Hongbai;GUO Ziyuan;QIANG Yongqian(School of Computer,Xi'an University of Posts&Telecommunications,Xi’an 710121,China;Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,Xi’an University of Post and Telecommunications,Xi’an 710121,China;First Affiliated Hospital of Xi'an Jiaotong University,Xi’an 710061,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第5期1405-1413,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61876138,61203311) 陕西省自然科学基金(2019JM-365) 陕西省教育厅自然科学专项(17JK0701) 陕西省网络数据分析与智能处理重点实验室开放课题基金(XUPT-KLND(201804)) 西安邮电大学创新基金(CXJJLI2018017)。
关键词 肺恶性度分级 CT征象 进化集成学习 量化分析 可解释性 Lung malignancy grading Computed Tomography(CT)signs Evolutionary ensemble learning Quantization analysis Interpretability
  • 相关文献

参考文献6

二级参考文献33

  • 1Tax D. One-class classification[D]. [Ph.D. dissertation]. DelftUniversity of Technology, 2001.
  • 2Xiao Ying-chao, Wang Huan-gang, Zhang Lin, et al. Twomethods of selecting Gaussian kernel parameters for one-classSVM and their application to fault detection[J].Knowledge-Based Systems, 2014,59(1): 75-84.
  • 3Mennatallah A, Markus G, and Slim A. Enhancing one-classsupport vector machines for unsupervised anomalydetection[C]. Proceedings of the ACM SIGKDD Workshopon Outlier Detection and Description, Chicago, USA, 2013:8-15.
  • 4Shahid N, Naqvi I, and Qaisax S. One-class support vectormachines: analysis of outlier detection for wireless sensornetworks in harsh environments [J]. Artificial IntelligenceReview, 2013, 39(1): l-49.
  • 5Tax D and Duin R. Support vector data description[J].Machine Learning, 2004, 54(1): 45-66.
  • 6Sch6lkopf B, Platt J, Shawe-Taylor J, et al. Estimating thesupport of a high-dimensional distribution[J]. NeuralComputation, 2001, 13(7): 1443-1471.
  • 7Tax D and Duin R. Combining one-class classifiers [C].Proceedings of 2nd International Workshop on MultipleClassifier Systems, Cambridge, UK, 2001: 299-308.
  • 8Segui S, Igual L, and Vitria J. Bagged one-class classifiers inthe presence of outliers [J]. International Journal of PatternRecognition and Artificial Intelligence, 2013,27(5): 1~21.
  • 9Cheplygina V and Tax D. Pruned random subspace method for one-class classifiers[C]. Proceedings of the lOth International Conference on Multiple Classifier Systems,Naples, Italy, 2011: 96-105.
  • 10Ratsch G, Mika S, Scholkopf B, et al. Constructing boostingalgorithms from SVMs: an application to one-classclassification [J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2002,24(9): 1184-1199.

共引文献939

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部