期刊文献+

包装箱型号标记缺陷检测系统设计与实现 被引量:2

Design and Implementation of Defect Detection System for Packing Case Type Mark
下载PDF
导出
摘要 目的为了实现空调包装箱上型号标记缺陷的实时动态检测,基于图像处理技术设计包装箱型号标记缺陷检测系统。方法基于AM5728控制器设计控制系统硬件平台,主要包括控制单元、图像采集与处理单元、成像单元等,并进行实际测试研究。采用几个关键方法,包括图像增强处理、形态学、缺陷检测、动态阈值分割算法等,并根据包装箱型号标记图像特征选择配准区域,同时给出一种动态阈值分割算法,利用各种算法实现缺陷检测。结果采集了250个包装箱条码样本,采用文中方法获取到了监测数据,正确率高达97.2%,漏检率为0。结论该方法具有较高的可靠性、通用性,可实现包装箱型号标记的缺陷快速检测,解决了空调包装箱上的型号标记实时动态缺陷检测的实际工程问题。 The work aims to design a defect detection system for packing case type mark based on image processing, in order to realize the real-time and dynamic detection of the type mark defects on the air-conditioning packing case. The hardware platform of the control system was designed based on AM5728 controller, which mainly including the control unit, image acquisition and processing unit, imaging unit, etc., and the actual test research was carried out. Several key methods were adopted, including image enhancement, morphology, defect detection, dynamic threshold segmentation algorithm, etc., and the registration area was selected according to the characteristics of the packing case type mark image. At the same time, a dynamic threshold segmentation algorithm was given to realize defect detection by various algorithms. 250 bar code samples are collected, and the monitoring data are obtained by using the method in this paper. The accuracy rate is as high as 97.2%, and the rate of missing inspection is 0.This method has high reliability and generality and can realize the defect detection of the type mark of the packing case quickly, and solve the practical engineering problem of the real-time dynamic defect detection of the type mark on the air-conditioning packing case.
作者 尚玉廷 SHANG Yu-ting(Gree Electric Appliances,Inc of Zhuhai,Zhuhai 519000,China;Zhuhai Gree Intelligent Equipment Co.,Ltd.,Zhuhai 519000,China)
出处 《包装工程》 CAS 北大核心 2021年第1期214-223,共10页 Packaging Engineering
关键词 包装箱 型号标记 图像处理 缺陷检测 packing case type mark image processing defect detection
  • 相关文献

参考文献7

二级参考文献66

  • 1葛纪帅,赵春江,黄文倩,孟志军.基于智能称重的水果分级生产线设计[J].农机化研究,2012,34(1):126-130. 被引量:17
  • 2韩彦芳,施鹏飞.基于数字图像处理的表面缺损检测技术[J].测控技术,2005,24(9):15-18. 被引量:18
  • 3陈亚军,张二虎.基于图像处理的印刷缺陷在线检测系统研究[J].包装工程,2005,26(6):64-66. 被引量:46
  • 4Carsten Steger, Markus Ulrich, Christian Wiedemann.机器视觉算法与应用[M].杨少荣,吴迪靖,段德山,译,北京:清华大学出版社,2008.
  • 5Helmut Kipphan. Handbook of Print Media: Technologies and Production Methods[M]. Heidelberger: Heidelberger Druchmaschinen AG, 2001 : 225-228.
  • 6Jung K. Text Information Extraction in Images and Video: A Survey[J]. Pattern Recognition, 2004, 37(5) : 977-997.
  • 7Nikolaou N, Badekas E, Papamarkos N, et al. Text Localization in Color Documents[C]// International Conference on Computer Vision Theory and Applications. Setubal: Portugal Springer Press, 2006 : 181-188.
  • 8Ye Q, Jiao J, Huang J, et al. Text Detection and Restoration in Natural Scene Images[J]. Journal of Visual Communication and Image Representation, 2007, 18(6) : 504-513.
  • 9曾臻,戴曙光,穆平安.基于机器视觉的汽车音响面板测试系统设计[C] //第九届工业仪表与自动化学术会议,2008.
  • 10章毓晋.图像处理[M].北京:清华大学出版社,1999.

共引文献25

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部