摘要
用户问答作为产品口碑的新型定性化体现,一经推出迅速成为各大电商平台的热点。文章以网购平台中服装产品的用户问答为切入点,构建BP神经网络分析产品月销量的关键影响因素,对电商平台管理、店铺经营具有实践意义。借助分析工具对用户问答数据内容进行挖掘,构建用户问答效价词典,并建立用户问答相关变量与产品月销量的BP神经网络模型进行实证分析。神经网络仿真结果表明,各相关变量对月销量存在不同程度的影响,用户问答数量正向影响月销量,用户问答类型中的关键影响因素为属性型回答。
As a new qualitative embodiment of product reputation,customers questions and answers(Q&As)has quickly become a hot spot on major e-commerce platforms once launched.This paper takes the customers Q&As in the online shopping platform as the entry point to build a BP neural network to discuss the key influence on the sales volume.By using the text analysis tools to mine the content of customers Q&As data,construct user Q&As valence dictionary,and establish the BP neural network model of cutomers Q&As related variables and monthly product sales for empirical analysis.The results of neural network simulation show that the relevant variables have different degrees of influence on the monthly sales volume,the number of user questions positively influences the monthly sales volume,and the key influencing factor of user questions type is attribute answers.
作者
张炎亮
赵蓓
ZHANG Yanliang;ZHAO Bei(School of Management Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处
《丝绸》
CAS
CSCD
北大核心
2021年第5期70-75,共6页
Journal of Silk
基金
国家科技部创新方法工作专项项目(2018IM020300)
NSFC联合基金重大项目(U1904210)。
关键词
用户问答
在线评论
文本分析
情感分析
BP神经网络
产品月销量
customers Q&As
online reviews
text analysis
sentiment analysis
BP neural network
monthly sales of products