期刊文献+

自动驾驶车辆行进参数有限时间估计方法研究

Research on the Finite Time Estimation Method of Driving Parameters of Autonomous Vehicles
下载PDF
导出
摘要 依靠车辆自动驾驶系统快速与高效的环境感知能力,可有效减少人为操控失误、降低交通事故发生率。针对自动驾驶车辆在车体和路况信息等参数估计过程中存在的时间延迟、误差较大的问题,提出一种考虑有限时间的自动驾驶车辆行进参数估计方法。首先通过构建辨识参数的仿射参数模型,推导了参数估计误差向量,并基于有限时间收敛理论设计了自适应参数更新律。同时,采用并行学习技术,对参数收敛过程的持续激励条件进行优化,从而简化估计过程,以期降低系统运行成本和响应时间。最后,利用所设计的车辆参数估计方法对车辆参数、路面状况等指标进行仿真验证。仿真结果表明,较之现有方法,所提方法能够实现快速地参数收敛,且收敛结果稳定、准确可靠。 Relying on the fast and efficient environmental perception ability of vehicle automatic driving system can effectively reduce human error and reduce the incidence of traffic accidents.Aiming at the problem of time delay and error in the process of vehicle body and road condition information estimation,a limited time estimation method is proposed.Firstly,the parameter estimation error vector is derived by constructing the affine parameter model of identification parameters,and the adaptive parameter updating law is designed based on the finite time convergence theory.At the same time,parallel learning technology is used to optimize the continuous excitation conditions of the parameter convergence process,so as to simplify the estimation process and reduce the operating cost and response time of the system.Finally,the vehicle parameters and road conditions are simulated and verified by the designed vehicle parameter estimation method.The simulation results show that compared with the existing methods,the proposed method can achieve fast parameter convergence,and the convergence results are stable,accurate and reliable.
作者 郭其涛 GUO Qi-tao(Changchun Automobile Industry Institute,Jilin Changchun 130013,China;China First Automobile Group Corporation,Education and Training Center,Jilin Changchun 130013,China)
出处 《机械设计与制造》 北大核心 2021年第5期107-110,114,共5页 Machinery Design & Manufacture
基金 国家自然基金青年基金(51705189)。
关键词 自动驾驶车辆 参数估计 低通滤波 并行学习 Autonomous Driving Vehicles Parameter Estimation Lowpass Filtering Concurrent Learning
  • 相关文献

参考文献2

二级参考文献18

  • 1宗长富,胡丹,杨肖,潘钊,徐颖.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报(工学版),2009,39(1):7-11. 被引量:45
  • 2阎岩,唐振民,陆建峰.地面智能机器人自主性评估研究[J].华中科技大学学报(自然科学版),2011,39(S2):68-71. 被引量:5
  • 3胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 4赵梅,张三同,朱刚.辅助粒子滤波算法及仿真举例[J].北京交通大学学报,2006,30(2):24-28. 被引量:14
  • 5Braghin,Francesco,Federico Cheli and Edoardo Sabbioni.Identification of tire model parameters through full vehicle experimental tests[J].Journal of Dynamic Systems,Measurement,and Control,2011,133(5):1-11.
  • 6Cheli Federico,Edoardo Sabbioni,M.Pesce and Stefano Melzi,A methodology for vehicle sideslip angle identification:comparison with experimental data[J].Vehicle System Dynamics,2005(45):549-563.
  • 7Best Matthew C.Identifying tyre models directly from vehicle test data using an extended Kalman filter[J].Vehicle System Dynamics,2010(48):171-187.
  • 8Dixon P.J.,M.C.Best and T.J.Gordon.An extended adaptive Kalman filter for real-time state estimation of vehicle handling dynamics[J].Vehicle System Dynamics,2000(34):57-75.
  • 9Arulampalam.M.S,Maskell.S,Gordon.N.,Clapp.T.A tutorial on particle filters for online nonlinear/non-8Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 10Pitt M K,Shephard,Shephard N.Filtering via simulation:auxiliary particle filter[J].American Statistical Association,1999,94(446):590-599.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部