期刊文献+

二分粒度聚类和KELM的全景图像火焰识别研究 被引量:1

Research on Panoramic Image Flame Recognition Based on the Bisecting Granular Clustering and KELM
下载PDF
导出
摘要 针对现有灭火机器人视觉系统的窄视野且检测结果受光照变化干扰的问题,提出了一种应用于大视角全景图像火焰识别且抗光照变化干扰的二分粒度聚类优化的核极限学习机方法。首先,对全景图像建立抗光照变化干扰的颜色模型;然后在该颜色模型下利用经过二分和粒度思想改进的K-means聚类算法分割疑似火焰区域与非火区域;最终提取疑似火焰区域的颜色分量等特征参数作为输入向量来训练核极限学习机(KELM)分类器以提取火焰区域。经仿真研究证明,该算法能快速准确识别全景火焰图像,对光照变化具有良好的鲁棒性,且通用性强。 Aiming at the narrow field of view of the existing fire-extinguishing robot vision system and the detection results are disturbed by the illumination variation,a flame recognition method for large-angle panoramic image and resistant to changes in illumination is proposed.It is kernel limit learning machine method for bisecting granular clustering optimization.Firstly,a color model that is resistant to illumination variation is established for the panoramic image.Then,using the K-means clustering algorithm improved by bisecting and granularity,the suspected flame region and non-fire region are segmented under the color model.Finally,the color component feature parameters of the suspected flame region are extracted as input vectors to train a kernel extreme learning machine(KELM)classifier to identify the flame region.Simulation results show that the algorithm has quickly and accurately effect on the processing of panoramic images with fire flame and good robustness with respect to the illumination variation,as well as stronger universality.
作者 段锁林 任云婷 潘礼正 王一凡 DUAN Suo-lin;REN Yun-ting;PAN Li-zheng;WANG Yi-fan(Robotics Institute of Changzhou University,Jiangsu Changzhou 213164,China;Mechanical and Electrical Engineering College,Changzhou Vocational Institute of Textile and Garment,Jiangsu Changzhou 213164,China)
出处 《机械设计与制造》 北大核心 2021年第5期133-138,共6页 Machinery Design & Manufacture
基金 国家自然科学基金(61773078) 江苏省科技支撑计划项目(BEK2013671) 常州市科技支撑计划(CE20175040) 江苏省高等学校自然科学研究项目(18KJB460001)。
关键词 火焰识别 聚类分析 粒度计算 核极限学习机 柱状全景图像 Flame Recognition Cluster Analysis Granular Computing Kernel Extreme Learning Machine Columnar Panoramic Image
  • 相关文献

参考文献6

二级参考文献56

  • 1徐海祥,喻莉,朱光喜,张翔,田金文.基于支持向量机的磁共振脑组织图像分割[J].中国图象图形学报,2005,10(10):1275-1280. 被引量:25
  • 2范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006,36(1):1-8. 被引量:50
  • 3谢克明,逯新红,陈泽华.粒计算的基本问题和研究[J].计算机工程与应用,2007,43(16):41-44. 被引量:11
  • 4Wang Dechang, Cui Xuenan, Eunsoo Park, et al. Adaptive flame detection using randomness testing and robust features [J]. Fire Safety Journal, 2013, 55: 116-125.
  • 5Chen T H, Wu P, Chiou Y, et al. An early fire-detection method based on image processing [C]//IEEE Int Conf on Image Processing, 2004, 24(3): 1707- 1710.
  • 6Toreyin B U, Dedeoglu Y, Enis Cetin A, et al. Computer vision-based method for real-time fire and flame detection [J]. Pattern Reeog Lett, 2006, 27: 49-58.
  • 7Ko B C, Cheong K H, Nam J Y, et al. Fire detection based on vision sensor a support vector machines [J]. Fire Safety Journal, 2009, 44: 322-329.
  • 8Borges P V K., Izquierdo E. A probabilistic approach for vision-based fire detection in videos[J]. IEEE Trans Circuits Syst Video Technol, 2010, 20: 721-731.
  • 9Celik T, Demirel. Fire detection in video sequences using a generic color model[J]. Fire Safety Journal, 2009, 44: 147- 158.
  • 10Kaew P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection [C]//2nd European Workshop on Advanced Video-Based Surveillance System, AVBS01, 2002:135-144.

共引文献29

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部