期刊文献+

结合频谱聚类与经验小波的轴承故障诊断方法 被引量:5

Bearing Fault Diagnosis Method Using Spectral Clustering and Empirical Wavelet
下载PDF
导出
摘要 实测轴承振动信号就有非平稳、非线性特征,因此,对该类信号的分析需要进行解调得到特征频率,在众多解调法中包络分析是最为常用的方法;为了使解调结果更加清晰,常在解调前进行滤波,达到滤除干扰成分可有效提升解调的效果。经验小波变换提供了基于频带划分的小波滤波框架,划分后频带可滤除部分干扰信号,突出故障信号。对此,受“箱型图”和层次聚类法的启发,对“突出值”聚类法进行频带划分,通过平方包络互相关系数选取合理的频带划分个数。最后选取平方包络峭度值最大的滤波子信号进行Teager能量算子解调,获取特征频率。文章针对不同工况下的不同故障类型轴承运行数据进行分析,验证算法的有效性。特别地,在复合故障分析中,利用动态阈值法到达分别突出不同轴承故障频率的效果。 The measured bearing vibration signals are usually non-stationary and non-linear,so the demodulation is necessary to obtain the frequency characteristic frequency.Among lots of demodulation methods,envelope analysis is the most popular one.When using the envelope analysis demodulation method,filtering is necessary to wipe out irrelevant signal components which can effectively improve the demodulation effect.Empirical wavelet transform provides a wavelet filter framework based on frequency band division and it can achieve the purpose of filtering out the interfering signals and highlight fault signals.Inspired by box-plot andhierarchical clustering,the method of"outliers"clustering is proposed for frequency band division,and reasonable number of frequency band division is selected by means of cross correlation coefficient.Finally,the filter signal with the maximum square envelope kurtosis value is selected for the square envelope demodulation to obtain the characteristic frequency employing the Teager energy operator.The validity of the algorithm is verified by analyzing the measured data of the failure bearingsof different kinds under different working conditions collected from a test bed.Specially,dynamic threshold is used to highlight the characteristic frequencies of different bearing faults.
作者 唐泽娴 林建辉 张兵 杨基宏 TANG Ze-xian;LIN Jian-hui;ZHANG Bing;YANG Ji-hong(State Key Laboratory of Traction Power,Southwest Jiaotong University,Sichaun Chengdu 610031,China;CRRC Qingdao Sifang Co.,Ltd.,Shandong Qingdao 266111,China)
出处 《机械设计与制造》 北大核心 2021年第5期144-148,共5页 Machinery Design & Manufacture
基金 国家重点研发计划(2017YFB1201103-06)。
关键词 滚动轴承故障诊断 经验小波变换 箱型图 层次聚类 平方包络 动态阈值 Rolling Bearing Fault Diagnosis Empirical Wavelet Transform Box Figure Hierarchical Clustering Squared Envelope Dynamic Threshold
  • 相关文献

参考文献3

二级参考文献18

  • 1冯庚斌,王澜,许慰平,柴东明,张生玉.机车车辆滚动轴承故障振动诊断技术[J].中国铁道科学,1994,15(3):41-55. 被引量:9
  • 2诸福磊.机械故障诊断中的现代信号处理方法[M].北京:科学出版社,2009.
  • 3WENYI WANG. EARLY DETECTION OF GEAR TOOTH CRACKING USING THE RESONANCE DEMODULATION TECHNIQUE. Mechanical Systems and Signal Processing, 2001,15 (5): 887-903.
  • 4Gusev VG,Yanover BE The complex representation of a discrete signal on the basis of its Hilbert transform. Radio. Eng. and Electron Phys. 1983,28(1): 83 - 89
  • 5Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc. R. Soc, 1998, 454:903 - 905.
  • 6Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation [ C ]. Acoustic, Speech and Signal Processing. Boston: IEEE Inter-national Conference on ICASSP, 1983 : 607 -610.
  • 7Antoni J, Randall R B. The spectral kurtosis: a useful tool for characterizing non-stationary signals [ J ]. Mechanical Systems and Signal Processing, 2006, 20 (2) : 282 -307.
  • 8Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [ J]. Mechanical Systems and Signal Processing, 2006, 20 (2) : 308 -331.
  • 9Antoni J. Fast computation of the Kurtogram for the detection of transient faults[ J ]. Mechanical Systems and Signal Processing, 2007, 21 ( 1 ) :108 - 124.
  • 10Wu Z H, Huang N E. Ensemble empirical mode decomposition-A noise assisted data analysis method [ J ]. Advances in Adaptive Data Analysis, 2009, 1 ( 1 ) :1 -41.

共引文献77

同被引文献57

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部