期刊文献+

基于GABP和改进NSGA-Ⅱ的高速干切滚齿工艺参数多目标优化决策 被引量:12

Multi-objective Optimization Decision of High-speed Dry Hobbing Process Parameters Based on GABP and Improved NSGA-Ⅱ
下载PDF
导出
摘要 针对高速干切滚齿过程中的工艺参数优化决策问题,提出一种基于加工工艺样本预测和多目标遗传优化算法的工艺参数优化决策方法。基于实际加工工艺样本集,以改进的多目标遗传算法(improved NSGA-Ⅱ)为主体模型,以最大刀具寿命、最小加工能耗为优化目标,以加工质量、加工时间为约束条件,利用遗传反向传播算法(GABP)神经网络建立关于加工优化目标的预测模型,将其作为多目标优化模型的适应度函数;通过DBSCAN算法获取待优化滚齿工艺问题的相似样本集,建立多目标优化问题输入区间;构建面向待优化滚齿工艺问题的多目标优化模型,迭代搜索最优工艺参数集。 A method was proposed to optimize and decide parameters in the situation of high speed dry hobbing,supported by example prediction and multi-objective genetic optimization algorithm.Based on actual processing sample sets,the subject model was a variant of NSGA-Ⅱ,the optimization goal was the maximum tool life and the minimum energy consumption.The improved GABP neural network was used to construct a prediction model for the processing optimization fitness function,and a similar instance set of the hobbing problem was obtained through the DBSCAN clustering algorithm,so as to establish multi-objective optimization constraints,and construct the multi-objective optimization model for optimizing and deciding process,which may search the optimal processing parameters iteratively.
作者 刘艺繁 阎春平 倪恒欣 牟云 LIU Yifan;YAN Chunping;NI Hengxin;MOU Yun(State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing,400030)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2021年第9期1043-1050,共8页 China Mechanical Engineering
基金 重庆市技术创新与应用发展专项(cstc2019jscx-mbdxX0041)。
关键词 高速干切 滚齿工艺参数 遗传反向传播算法神经网络 改进的多目标遗传算法 最大刀具寿命 最小加工能耗 high speed dry cutting hobbing process parameter genetic algorithm-back propagation(GABP)neural network improved non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) maximum tool life minimum machining energy consumption
  • 相关文献

参考文献4

二级参考文献31

  • 1武美萍,廖文和.INTERNET-BASED MACHINING PARAMETER OPTIMIZATION AND MANAGEMENT SYSTEM FOR HIGH-SPEED MACHINING[J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(1):42-46. 被引量:5
  • 2张臣,周来水,余湛悦,安鲁陵,周儒荣.基于仿真数据的数控铣削加工多目标变参数优化[J].计算机辅助设计与图形学学报,2005,17(5):1039-1045. 被引量:21
  • 3蒋亚军,娄臻亮,李明辉.基于模糊粗糙集理论的模具数控切削参数优化[J].上海交通大学学报,2005,39(7):1115-1118. 被引量:9
  • 4李建广,姚英学,刘长清,黎世文.基于遗传算法的车削用量优化研究[J].计算机集成制造系统,2006,12(10):1651-1656. 被引量:27
  • 5TRIDECH S, CHENG K. Low Carbon mamufacturing: Characterization, theoritical models and implementation [C]//The 6th International Conference on Manufacturing Research(ICMR08), 2008: 403-412.
  • 6SARAVANAN R, ASOKAN P, VIJAYAKUMAN K. Machining parameters optimization for turning cylindrical stock into a continuous finished profile using genetic algorithm(GA) and simulated annealing(SA)[J]. International Journal of Advanced Manufacturing Technology, 2003, 21(1): 1-9.
  • 7SCHLOSSER R, KLOCKE F, LUNG D. Sustainability in manufacturing: Energy consumption of cutting processes[C]//Proceedings of the 8th Global Conference on Sustainable Manufacturing Nov. 22-24, 2010, Abu DhabiUniversityUAE: CIRP, 2010- 85-89.
  • 8RAJEMI M F, MATIVENGA P T, ARAMCHAROEN A. Sustainable machining: Selection of optimum turning conditions based on minimum energy considerations[J]. Journal of Cleaner Production, 2010 (18): 1059-1065.
  • 9MORI M, FUJISHIMA M, INAMASU Y, et al. A study on energy efficiency improvement for machine tools[J]. Manufacturing Technology, 2011, 60(1): 145-148.
  • 10艾兴,肖诗刚.切削用量简明手册[M].第3版.北京:机械工业出版社,1994.

共引文献100

同被引文献117

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部