期刊文献+

支持向量机和Logistic回归在GDM风险预测中的应用 被引量:2

Application of support vector machine and logistic regression in risk prediction of GDM
下载PDF
导出
摘要 目的探讨两种不同机器学习算法在妊娠期糖尿病(gestational diabetes mellitus,GDM)风险预测中的应用。方法选取2019年7月—2020年8月在广州市妇女儿童医疗中心及广东省计划生育专科医院进行产前检查的孕早期妇女520例,其中妊娠期糖尿病孕妇200例,随机抽取同期正常孕妇320例,收集孕妇的一般资料和孕早期(8~12周)的生化指标、血常规和凝血功能等检测资料。利用这些分析变量建立支持向量机(SVM)和Logistic回归(LR)预测模型。根据模型预测能力和模型实用性,如准确率、精确率、真阳性(TP)率、假阳性(FP)率、召回率、F测度、受试者工作特征曲线(ROC)进行效果评价。结果两种预测模型的分类准确率总体为86%。SVM模型在真阳性(TP)率、假阳性(FP)率、召回率、F测度、受试者工作特征曲线(ROC)方面优于LR模型。结论在分类与预测方面,支持向量机算法比Logistic回归模型更具有实用价值。 Objective To explore the application of two different machine learning algorithms in the risk prediction of gestational diabetes mellitus(GDM).Methods A total of 520 pregnant women with gestational diabetes mellitus were selected from Women and Children s Medical Center and Guangdong Family Planning Hospital from July 2019 to August 2020,including 200 cases of gestational diabetes mellitus,and 320 normal pregnant women in the same period.The general information of pregnant women and the detection data of biochemical indexes,blood routine test and coagulation function in early pregnancy(8~12 weeks)were collected.Support vector machine(SVM)and logistic regression(LR)prediction models were established by using these analysis variables.According to the predictive ability and practicability of the model,something like accuracy rate,precision ratio,true positive(TP)rate,false positive(FP)rate,recall rate,F-measure and receiver operating characteristic curve(ROC)were evaluated.Results The classification accuracy of the two models was 86%.SVM model is better than LR model in TPrate,FPrate,recall rate,F measure and ROC.Conclusion Support vector machine is more practical than logistic regression model in classification and prediction.
作者 孟艳辉 李春娜 吴瑞珊 宋小燕 彭红波 MENG Yanhui;LI Chunna;WU Ruishan;SONG Xiaoyan;PENG Hongbo(NHC Key Laboratory of Male Reproduction and Genetics,Family Planning Research Institute of Guangdong Province,Guangzhou 510600,China;School of Management,Hainan University,Haikou 510600,China)
出处 《广州医药》 2021年第3期23-27,共5页 Guangzhou Medical Journal
基金 广东省医学科学技术研究基金(B2019195)。
关键词 支持向量机 LOGISTIC回归 预测 Support vector machine Logistic regression Prediction
  • 相关文献

参考文献3

二级参考文献31

  • 1杨慧霞,董悦,李苹,吴北生,徐阳.妊娠期糖尿病孕妇的脂代谢变化[J].中华围产医学杂志,1998,1(1):19-21. 被引量:29
  • 2孙蕾,耿国华,周明全,李丙春.用于医学图像分类的支持向量机算法研究[J].计算机应用与软件,2004,21(11):85-87. 被引量:9
  • 3杨慧霞,张眉花,孙伟杰,赵怿.妊娠期糖代谢异常相关因素的研究[J].中华妇产科杂志,2005,40(11):725-728. 被引量:66
  • 4姜殿林,董桂虎,徐霞.正常妊娠妇女血脂及载脂蛋白水平的变化[J].实用临床医学(江西),2006,7(4):16-17. 被引量:44
  • 5刘兴华,蔡从中,袁前飞,肖汉光,孔春阳.基于支持向量机的乳腺癌辅助诊断[J].重庆大学学报(自然科学版),2007,30(6):140-144. 被引量:17
  • 6Christopher J C, Burges. A tutorial on support vector machines for pattern recognition [ J]. Data mining and knowledge discovery, 1998,2: 121 - 167.
  • 7Oscar L, Francisco T, Cuillermo MA, et al. Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine [J]. Arti? clal Intelligence in Medicine,2009,45: 63 -76.
  • 8Stephan D, Lucila OM, Harald K, et al. A Comparison of Machine Learning Methods for the Diagnosis of Pigmented Skin Lesions[ J]. Journal of Biomedical Informatios,2001,34: 28 - 36.
  • 9Everthon SF, Rodrigo CG, Paulo RS,et al. Wavelet time -frequency analysis and least squares support vector machines for the identi? cation of voice disorders [ J ]. Computers in Biology and Medicine ,2007,37: 571 -578.
  • 10A. Verikas, A. Gelzinis, M. Baeauskiene, et al. Using the patient's questionnaire data to screen laryngeal disorders[ J]. Computers in Biology and Medicine,2009,39: 148 -155.

共引文献121

同被引文献17

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部