摘要
针对成品油管道泄漏点定位精度不高的缺陷,提出一种基于改进灰狼算法的成品油输送管道泄漏定位方法.该方法建立超声波波速信号与管道内部压力信号的数学关系,将超声波波速信号进行局域均值分解,信号经过消噪处理后采用了小波变换进而提取出信号拐点.通过获得成品油输送管道首末站超声波波速变化的拐点时间,建立目标函数,通过改进灰狼算法估计泄漏点位置.结果表明,所提方法能够进行成品油输送管道的泄漏点准确定位.
Aiming at the low localization accuracy of leakage points of refined oil pipeline,a localization method for transportation pipeline leakage of refined oil based on improved grey wolf optimizer(IGWO)was proposed.The mathematical relationship between ultrasonic velocity signal and pressure signal inside the pipeline was established.The ultrasonic velocity signal was processed with local mean decomposition(LMD),and the turning point was extracted by using wavelet transform after signal de-noising.An objective function was established by the change of turning point moment of ultrasonic velocity at both the first and the last stations of refined oil transportation pipeline,and the leakage point locations were estimated by IGWO.The results show that the as-proposed method can locate the leakage points of refined oil transportation pipeline accurately.
作者
郭颖
杨理践
张贺
GUO Ying;YANG Li-jian;ZHANG He(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;School of Information and Control Engineering,Liaoning Shihua University,Fushun 113001,China)
出处
《沈阳工业大学学报》
EI
CAS
北大核心
2021年第3期317-323,共7页
Journal of Shenyang University of Technology
基金
国家自然科学基金面上项目(61871450).
关键词
超声波波速
改进灰狼算法
局域均值分解
小波变换
泄漏定位
粒子群优化
压力
流量
ultrasonic velocity
improved grey wolf optimizer
local mean decomposition
wavelet transform
leakage localization
particle swarm optimization
pressure
flow