期刊文献+

一种基于行公因子提取的改进Coppersmith算法 被引量:1

Improved Coppersmith Algorithm Based on Extraction of Row Common Factor
下载PDF
导出
摘要 1996年欧密会上,Coppersmith提出一种对单变元模方程求小根的多项式时间算法,该算法对公钥密码系统的安全性分析具有重要意义。结合Coppersmith算法中格基矩阵的结构特点和元素性质提出一种改进算法,通过逐次提取格基矩阵不同块中行向量的公因子,有效降低了Coppersmith算法的求解时间。同时通过实验证明了此改进算法可有效兼容一种预处理算法,通过将这两种算法结合,进一步提高了Coppersmith算法的求解效率,实验表明较原Coppersmith算法最高可提升22.64%。 In a seminal work at Eurocrypt1996,the polynomial-time Coppersmith algorithm has been proposed for finding small roots of univariate modular equations.This algorithm is of great significance to the security analysis of public-key cryptosystems.In this paper,an improved Coppersmith algorithm is proposed based on the structural characteristics and element properties of lattice basis matrix.This algorithm can effectively reduce the running time of the Coppersmith algorithm by successively extracting the common factors of the row vectors in different blocks of the lattice basis matrix.At the same time,the compatibility of this improved algorithm with a preprocessing algorithm is proved,and combining these two algorithms further improves the efficiency of Coppersmith algorithm,which can be up to 22.64%higher than the original Coppersmith algorithm.
作者 王云飞 李光松 WANG Yunfei;LI Guangsong(Information Engineering University, Zhengzhou 450001, China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2021年第1期81-86,共6页 Journal of Information Engineering University
基金 国家自然科学基金群体创新项目(61521003)。
关键词 Coppersmith算法 LLL算法 格基约化 公因子提取 Coppersmith algorithm LLL algorithm lattice reduction common factor extraction
  • 相关文献

参考文献1

二级参考文献10

  • 1Rivest R, Shamir A L. Adleman. A method for obtaining digital signatures and public key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126.
  • 2Boneh D. Twenty years of attacks on the RSA cryptosystem[J]. Notices of the AMS, 1999, 46(2) : 203-212.
  • 3Coppersmith D. Finding a small root of a univariate modular equation[ C ]//Proceedings of EUROCRYPT 1996. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1996: 155-165.
  • 4Coppersmith D. Finding a small root of a bivariate integer equation ; factoring with high bits known [ C ]//Proceedings of EU- ROCRYPT 1996. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1996: 175-189.
  • 5Boneh D, Durfee G, Frankel Y. An attack on RSA given a small fraction of the private key bits[ C ]//Proceedings of ASIA- CRYPT 1998. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1995: 25-34.
  • 6Blomer J, May A. New partial key exposure attacks on RSA[ C ]//Proceedings of CRYPTO 2003. Lecture Notes in Computer Science, Berlin : Springer-Verlag, 2003:27-43.
  • 7Ernst M, Jochemsz E, May A, et al. Partial key exposure attacks on RSA up to full size exponents[ C ]//Proceedings of EU- ROCRYPT 2005. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2005: 371-386.
  • 8Grotschel M, Lovasz L, Schrijver A. Geometric algorithm and combinatorial optimization [ M ]. Berlin: Springer-Verlag, 1993.
  • 9Lenstra A K, Lenstra H W, Lovasz L. Factoring polynomials with rational coefficients[ J]. Mathematiche Annalen, 1982, 261(4) : 515-534.
  • 10Howgrave-Graham N A. Finding small roots of univariate modular equations revisited[ C ]//Proceedings of Cryptography and Coding. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1997: 131-142.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部