摘要
为了提高冷水机组的运行效率、设备可靠性和能源利用率,本研究将对冷水机组的多故障耦合进行检测和诊断。首先,本研究使用RP-1043(Research Promotion)项目的故障数据,对冷水机组几种典型故障数据进行分析对比。其次,本研究使用3种树模型对数据进行训练,发现随机森林在准确率和训练预测的效率上综合表现最好。使用随机森林模型,结合专家知识,对故障等级为1的冷水机组的运行数据进行特征选取,然后建立贝叶斯网络故障诊断模型。最后,使用该模型对实际故障案例进行诊断与分析,对比附加信息层对故障诊断的影响。结果表明,该模型仅使用故障特征节点便可以对故障进行有效的诊断,合理利用附加信息层可以进一步提高故障诊断的可靠性。
In order to improve the operating efficiency,equipment reliability and energy efficiency of the water chilling packages,the detection and diagnosis on the multiple faults coupling of the water chilling packages is conducted.First,using the failure data of the RP-1043 project,several typical failure data of the water chilling packages are analyzed contrastively.Secondly,three tree models are used to train the data,and it’s found that the random forest has the best overall performance in terms of accuracy and training prediction efficiency.Using the random forest model,combined with expert knowledge,the feature selection of water chilling packages operating data with fault level 1 is conducted,and then the Bayesian network fault diagnosis model is set up.Finally,the model is used to diagnose and analyze actual fault cases,and the influence of additional information layer on fault diagnosis is compared.The results show that the model can effectively diagnose the fault using only the fault characteristic nodes,and the reasonable use of the additional information layer can further improve the reliability of the fault diagnosis.
作者
朱波
张佳辉
周镇新
曹子涵
陈焕新
陈建业
刘志龙
Zhu Bo;Zhang Jiahui;Zhou Zhenxin;Cao Zihan;Chen Huanxin;Chen Jianye;Liu Zhilong(Huazhong University of Science and Technology;State Key Laboratory of Compressor Technology,Hefei General Machinery Research Institute Co.,Ltd.)
出处
《制冷与空调》
2021年第4期95-103,共9页
Refrigeration and Air-Conditioning
基金
国家自然科学基金(51876070)
压缩机技术国家重点实验室开放基金项目(SKL-YSJ201912)。
关键词
冷水机组
故障检测和诊断
随机森林
贝叶斯网络
water chilling packages
fault detection and diagnosis
random forest
Bayesian network