期刊文献+

蜜罐式移动目标安全防御在物联网中的应用

Application of Honeypot Mobile Target Security Defense in Internet of Things
下载PDF
导出
摘要 物联网的快速发展带来了许多挑战。安全是其中的主要挑战。传统的解决方案无法跟上攻击者快速发展的步伐。移动目标防御(MTD)部署了多种机制和策略,这些机制和策略随着时间的推移而变化,以防止系统漏洞被利用。利用周围的移动设备作为计算资源,建立虚拟物联网模块作为假冒和真实的传感器和网关。提出的管理框架“HIoT”动态地改变模块的角色,以持续迷惑攻击者。虚拟网关可以是静态网关的中继器,也可以是假物联网的一部分,依赖假虚拟传感器的假流量。结果表明,该系统提高了物联网的安全等级,并且性能较好。 The rapid development of the Internet of Things poses many challenges.Security is one of the main challenges.Traditional solutions cannot keep up with the rapid development of attackers.Mobile target defense(MTD)deploys multiple mechanisms and strategies that change over time to prevent system vulnerabilities from being exploited.This article uses the surrounding mobile devices as computing resources and builds virtual IoT modules as counterfeit and real sensors and gateways.The proposed management framework"HIoT"dynamically changes the role of the modules to continue to confuse attackers.A virtual gateway can be a repeater of a static gateway,or it can be part of a fake Internet of Things,relying on fake traffic from fake virtual sensors.The results show that the system improves the security level of the Internet of Things and has better performance.
作者 赵宇冰 蔡建军 葛江瑜 于光宗 宋媛 马俊明 ZHAO Yubing;CAI Jianjun;GE Jiangyu;YU Guangzong;SONG Yuan;MA Junming(State Grid Gansu Electric Power Company,Lanzhou 730000,China)
出处 《微型电脑应用》 2021年第5期19-22,共4页 Microcomputer Applications
基金 甘肃省自然科学研究基金计划项目(1308RJZA273)。
关键词 物联网 移动目标防御 蜜罐技术 网关 Internet of Things MTD honeypot gateway
  • 相关文献

参考文献6

二级参考文献43

  • 1闫巧,吴建平,江勇.网络攻击源追踪技术的分类和展望[J].清华大学学报(自然科学版),2005,45(4):497-500. 被引量:15
  • 2沈永清,徐中伟.通用嵌入式系统软件测试平台的设计[J].计算机工程与应用,2007,43(15):83-85. 被引量:10
  • 3江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012.
  • 4SPlTZNERL.Honeypots:追踪黑客[M].邓云佳,译.北京:清华大学出版社,2004:221-230.
  • 5Honeynet Project. Know your enemy: Honeynets [EB/OL] . http://project, honeynet, org.
  • 6Niels Provos and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to Intrusion Detection [M]. 2007,7.
  • 7Jun C, Xiaowei C. Intrusion Detection System Research Based on Data Mining for IPv6[C]. Information Tech- nology and Applications (IFITA), 2010 International Fo- rum on. IEEE, 2010, 1: 384-388.
  • 8Yu Z. Study on intrusion IPv6 detection system on LINUX[C]. Computational Intelligence and Industrial Applications, 2009. PACIIA 2009. Asia-Pacific Confer- ence on. IEEE, 2009, 2: 5-8.
  • 9Jun C, Xiao C. Intrusion Detection System Research Based on Data Mining for IPv6[C]. Information Tech- nology and Applications (IFITA), 2010 International Fo- rum on. IEEE, 2010, 1: 384-388.
  • 10Altaher A, Ramadass S, Almomani A. Real time network anomaly detection using relative entropy[C] .High Capac- ity Optical Networks and Enabling Technologies (HO- NET), 2011. IEEE, 2011: 258-260.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部