期刊文献+

基于改进集合经验模态分解和深度信念网络的出水总磷预测 被引量:4

Prediction of effluent total phosphorus based on modified ensemble empirical mode decomposition and deep belief network
下载PDF
导出
摘要 出水总磷的准确预测对于城市污水处理厂的高效、稳定的运行至关重要。文中针对城市污水处理过程中出水总磷难以预测的问题,提出一种基于改进集合经验模态分解(modified ensemble empirical mode decomposition,MEEMD)和深度信念网络(deep belief network,DBN)的出水总磷预测方法。首先,设计一种MEEMD算法对城市污水处理过程出水总磷数据信号进行分解,获取多个本征模态函数(intrinsic mode function,IMF)组合;然后,建立一种基于模拟退火(simulated annealing,SA)算法的深度信念网络预测模型,通过优化的模型结构对分解后得到的每个IMF分量进行有效预测;最后,通过大气CO_(2)浓度预测和城市污水处理出水总磷预测验证了所提出方法的有效性。 Accurate prediction of effluent total phosphorus is essential for the stable and efficient operation of urban wastewater treatment plants.Aiming at the problem that effluent total phosphorus is difficult to predict in urban wastewater treatment process,a prediction method of effluent total phosphorus based on modified ensemble empirical mode decomposition(MEEMD)and deep belief network(DBN)is proposed in this paper.First,a MEEMD algorithm is designed to decompose the effluent total phosphorus data signal of the effluent from urban wastewater treatment process.Then,establish a deep belief network prediction model based on simulated annealing(SA)algorithm,and effectively predict each IMF component obtained after decomposition through the optimized model structure.Finally,the effectiveness of the proposed method is verified by the prediction of atmospheric CO_(2) concentration and the effluent total phosphorus in urban wastewater treatment.
作者 王龙洋 蒙西 乔俊飞 WANG Longyang;MENG Xi;QIAO Junfei(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2021年第5期2745-2753,共9页 CIESC Journal
基金 国家自然科学基金项目(61533002,61903012,62073006,61890930-5) 国家重点研发计划项目(2018YFC1900800-5)。
关键词 城市污水处理过程 出水总磷 集合经验模态分解 深度信念网络 urban sewage treatment process effluent total phosphorus ensemble empirical mode decomposition deep belief network
  • 相关文献

参考文献6

二级参考文献64

共引文献66

同被引文献38

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部