期刊文献+

基于Hog特征的配网工程智慧工地门禁系统 被引量:2

Smart Site Access Control System for Distribution Network Engineering Based on Hog Feature
下载PDF
导出
摘要 根据江门供电局实际工程项目所提出的智慧工地,针对其中的门禁系统需求,使用OpenCV的接口和多线程技术进行实时图像采集,采用第三方开源的人脸识别库FaceRecognitionDotNet进行设计,在检测上采用了Hog特征,在识别验证采用了Dlib开源的ResNet模型,以此为基础设计智慧工地门禁系统软件,实现施工人员考勤、考勤数据可视化和施工人员数据管理等功能。 According to the smart construction site proposed by the actual engineering project of Jiangmen Power Supply Bureau,in response to the access control system requirements,the OpenCV interface and multithreading technology are used for real-time image acquisition.The Hog feature is used for detection,and the Dlib open source ResNet model is used for recognition and verification.Based on this,the smart site access control system software is designed to realize the functions of construction staff attendance,attendance data visualization and construction staff data management.
作者 邹媛媛 练文广 黄健光 张红阳 周远波 林润钊 蔡庆荣 ZOU Yuanyuan;LIAN Wenguang;HUAN Jianguang;ZHANG Hongyang;ZHOU Yuanbo;LING Runzhao;CAI Qingrong(Wuyi University,Jiangmen 529000,China;Minghao Electric Power Supervision Co.,Ltd.,Jiangmen 529000,China)
出处 《电工技术》 2021年第8期36-39,共4页 Electric Engineering
基金 五邑大学基建工程智慧工地服务科研咨询服务项目(编号HX19083)。
关键词 门禁系统 人脸识别 考勤 access control system face recognition attendance
  • 相关文献

参考文献3

二级参考文献36

  • 1郑夏翊,李惠萍,骆王成,胡成功.物联网技术在项目质量安全管理中的应用[J].土木建筑工程信息技术,2013,5(2):101-106. 被引量:14
  • 2王要武,吴宇迪.智慧建设及其支持体系研究[J].土木工程学报,2012,45(S2):241-244. 被引量:44
  • 3Grady Booch.“面向对象分析与设计(原书第2版)”[M].2006.5.
  • 4John Gossman Introduction to Model/View/ViewModel pattern for building WPF apps http://blogs.msdn.corn/b/ j ohngossman/archive/2005/10/08/478683.aspx 2005.10.
  • 5Building Enterprise Applications with Windows(R) Presentation Foundation and the Model View ViewModel Pattern-New from Microsoft Press. Targeted News Service (Mar 23, 2011), p. n/a. 2011.
  • 6Joshua Kerievsky[M].“重构与模式”2006.12.
  • 7TAN X, CHEN S, ZHOU Z, et al. Face recognition from a single image per person: a survey J]. Pattern Recognition, 2006, 39(9) : 1725 - 1745.
  • 8AHONEN T, HADID A, PIETIKAINEN M. Face de- scription with local binary patterns: application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12) : 2037 - 2041.
  • 9CHEN D, CAO X, WEN F, et al. Higher is better: high-dimensional feature and its efficient compression for face verification [C]// IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ' 13). Portland: IEEE Computer Society, 2013 : 1 - 8.
  • 10LIU C, WECHSLER H. Gabor feature based classifica- tion using the enhanced fisher linear discriminant model for face recognition [J]. IEEE Transactions on Image Processing, 2002, 11(4).. 467-476.

共引文献97

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部