摘要
用上下解方法讨论球外部区域Ω={x∈ℝ^(N):x>R 0}上含梯度项的椭圆边值问题:{-Δu=K(|x|)f(|x|,u,u),x∈Ω,αu+β∂u/∂n|∂Ω=0,lim|x|→∞u(x)=0正径向解的存在性与唯一性,其中N≥3,R 0>0,K:[R 0,∞)→ℝ+和f:[R 0,∞)×ℝ×ℝ+→ℝ连续.在系数函数K(r)=O(1/r 2(N-1))(r→+∞),非线性项f(r,u,η)满足一些适当的不等式条件且关于η满足Nagumo条件时,证明该问题正径向解的存在性与唯一性.
Using the method of upper and lower solutions,we discuss the existence and un iqueness of positive radial solutions for elliptic boundary value problems with gradient term:-Δu=K(|x|)f(|x|,u,u),x∈Ω,αu+β∂u∂/n∂Ω=0,lim x→∞u(x)=0,whereΩ={x∈ℝN:x>R 0},N≥3,R 0>0,K:[R 0,∞)→ℝ+and f:[R 0,∞)×ℝ×ℝ+→ℝare continu ous.When the coefficient function K(r)=O(1/r^2(N-1))(r→+∞),under the condition that the nonlinear term f(r,u,η)satisfies some approp riate inequality conditions and Nagumo condition onη,we prove the existence and uniqueness of the positive radial solution of the problem.
作者
伏彤彤
李永祥
FU Tongtong;LI Yongxiang(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第3期435-443,共9页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11661071,12061062)。
关键词
椭圆边值问题
正径向解
外部区域
NAGUMO条件
上解
下解
elliptic boundary value problem
positive radial solution
exterior domain
Nagumo condition
upper solution
lower solution