摘要
考虑一类具有Robin边值条件的右端不连续的奇摄动拟线性微分方程.首先,在给定条件下构造在间断曲线附近具有内部层的光滑解的渐近表达式;其次,基于缝接法证明该问题解的存在性,并给出余项估计;最后,用数值算例验证该方法的有效性.
We consider a class of singularly perturbed quasilinear differential equation with Robin boundary value conditions and discontinuous right-hand side.Firstly,under the given conditions,the asymptotic expression of a smooth solution with an internal l ayer in the neighborhood of the discontinuous curve is constructed.Secondly,based on the matching technique,the existence of such solution is proved,and the remainder estimation is given.Finally,the effectiveness of the method is verified by a numerical example.
作者
LIUBAVIN Aleksei
倪明康
杨倩
LIUBAVIN Aleksei;NI Mingkang;YANG Qian(School of Mathematical Sciences,East China Normal University,Shanghai 200062,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第3期451-459,共9页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11871217)
上海市科委基金项目(批准号:18dz2271000)。
关键词
奇摄动
渐近展开
内部层
Robin边值条件
singular perturbation
asymptotic expansion
internal layer
Robin boundary value condition