期刊文献+

基于图像特征的卷积核初始化方法 被引量:3

Convolution Kernel Initialization Method Based on Image Features
下载PDF
导出
摘要 针对当前卷积核初始化方法易导致网络不稳定及主成分分析算法对网络结构限制的问题,提出一种基于图像特征的卷积核初始化方法.该方法先结合模糊处理技术和边缘处理技术对图像进行采样,再将采样后的数据随机分组,使用主成分分析算法提取各组数据的主成分,初始化卷积核.将该方法应用于数据集Cifar-10和Corel-1000,并与Gauss初始化方法和He初始化方法进行对比测试,实验结果表明,该方法性能优于其他卷积核初始化方法. Aiming at the problem that the current convolution kernel initialization method was easy to lead to network in stability and the limitation of principal component analysis algorithm on network structure,we proposed a convolution kernel initialization method based on image features.Firstly,the method combined fuzzy processing technology and edge processing technology to sample images,and then the sampled d ata were randomly divided into groups.Principal component analysis algorithm was used to extract the principal components of each group of data,and the convolution kernel was init ialized.We applied the method to Cifar-10 and Corel-1000 datasets,and compared it with Gaussian initialization method and He initialization method.The expe rimental results show that the performance of the method is superior to other convolution kernel initialization methods.
作者 李鹏松 李俊达 倪天宇 张琦 胡建平 LI Pengsong;LI Junda;NI Tianyu;ZHANG Qi;HU Jianping(College of Sciences,Northeast Electric Power University,Jilin 132012,Jilin Province,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2021年第3期587-594,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61672149)。
关键词 深度学习 卷积核初始化 图像特征 主成分分析 随机组合 deep learning convolution kernel initialization image feature principal component analysis random combination
  • 相关文献

参考文献12

二级参考文献193

  • 1卜莎莎,章毓晋.基于局部约束线性编码的单帧和多帧图像超分辨率重建[J].吉林大学学报(工学版),2013,43(S1):365-370. 被引量:3
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.

共引文献3045

同被引文献19

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部