期刊文献+

基于个性化场景的5G基站节能方法 被引量:5

Research on Energy-saving Methods of 5G Base Station Based on Personalized Scenarios
下载PDF
导出
摘要 为了最大化基站的可节能空间,解决全网绿色基站的智能发现问题,通过改进Affinity Propagation聚类算法对基站日负荷曲线进行自适应聚类,并进一步挖掘分析周效应下的日潮汐现象和汐节能时段,智能化识别基站的个性化节能场景,从而周期性地采取差异化节能策略。实验分析验证了该算法的高效性和准确性,预计节能空间可达20%以上,可应用于5G基站能耗的智能化管理,提高5G网络能效。 In order to maximize the energy-saving space of the base station(BS),this paper solves the problem of smart discovery of green BSs in the entire network.Specifically,an improved Affinity Propagation clustering algorithm is used to adaptively cluster the daily load curve of 5G BSs,and to further explore and analyze the daily tidal phenomena and the duration in the night tides under the weekly effect.Then the personalized energy-saving scenarios of BSs are intelligently identified to periodically adopt differentiated energy-saving strategies.Experimental analysis demonstrates the efficiency and accuracy of the algorithm,and the estimated energy-saving pace can reach more than 20%.It can be applied to the intelligent management of 5G BS energy consumption to improve the energy efficiency of 5G networks.
作者 郑佳欢 向勇 ZHENG Jiahuan;XIANG Yong(Research Institute of China Telecom Co.,Ltd.,Guangzhou 510630,China)
出处 《移动通信》 2021年第3期91-96,共6页 Mobile Communications
关键词 Affinity Propagation聚类 轮廓系数 周效应 潮汐现象 个性化节能场景 5G基站 智慧节能 Affinity Propagation clustering silhouette score weekly effect tidal phenomenon personalized energy-saving scenarios 5G base station intelligent energy-saving
  • 相关文献

参考文献4

二级参考文献37

  • 1詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 2Java A, Song X D, Finin T, et al. Why we twitter: understanding microblogging usage and communities. Proceedings of the 9th International Workshop on Knowledge Discovery on the Web (WebKDD'07) and 1st International Workshop on Social Networks Analysis (SNA-KDD'07) on Web Mining and Social Network Analysis, Aug 12-15,2007, San Jose, CA, USA. New York, NY, USA: ACM, 2007: 56--{i5.
  • 3Bollen J, Pepe A, Mao H. Modeling public mood and emotion: twitter sentiment and socio-economic phenomena. Proceedings of the 19th International World Wide Web Conference (WWW·10). Apr 26-30, 2010, Raleigh, NC, USA. 2010.
  • 4Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1): 1-8.
  • 5Bollen J, Mao H, Pepe A. Determining the public mood state by analysis of microblogging posts. Proceedings of the 12th International Conference on the Synthesis and Simulation of Living System (ALIFE'10), Aug 19-23, 2010, Odense, Denmark. Cambridge, UK: MIT Press, 2010: 667-668.
  • 6Zhao J, Dong L, Wu J, et al. Moodlens: An emoticon-based sentiment analysis system for Chinese tweets. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), Aug 12-16,2012, Beijing, China. New York, NY, USA: ACM, 2012: 1528-1531.
  • 7Tsagkalidou K, Koutsonikola V A, Vakali A, et al. Emotional aware clustering on micro-blogging sources. Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction, Oct 9-12, 2011, Memphis, TN, USA. Berlin, Germany: Springer, 2011: 387-396.
  • 8Mitrovic M, Paltoglou G, Tadic B. Networks and emotion-driven user communities at popular blogs. The European Physical Journal B, 2010, 77(4): 597-609.
  • 9Das D, Bandyopadhyay S. Emotions on Bengali blog texts: role of holder and topic. Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM'II), Jun 25-27, 2011, Kaohsiung, China. Piscataway, NJ, USA: IEEE, 2011: 587-592.
  • 10Yamashita T, Sato H, Oyama S, et al. Classification of twitter users based on following relations. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS'13), Mar 13-15, 2013, Hong Kong, China. Hong Kong, China: Newswood Limited, 2013.

共引文献64

同被引文献36

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部