期刊文献+

基于一种优化权重的K-近邻算法的缺失财务数据组合填补

K-nearest Neighbor Algorithm Based on Optimized Weight to Fill in the Missing Financial Data Combination
下载PDF
导出
摘要 在对上市公司进行财务分析时,相关财务数据的完整性对数据分析意义重大.针对这些非随机性缺失财务数据的填补,将基于明考夫斯基距离,根据近邻原理找出与缺失数据同类的相似样本,作为一个新的训练数据集;然后提出一种优化权重的K-近邻算法(OKNN算法),对上述的相似样本给予各个指标组合权重系数值;最后根据优化的权重系数对提出的新算法进行实例验证,结果证实提出的OKNN组合填补方法优于经典的KNN算法和加权的KNN算法距离填补法. When conducting financial analysis of listed companies,the completeness of relevant financial data is of great significance to data analysis.For the filling of these non-random missing financial data,samples similar to the missing data were found based on the Minkowski distance and the nearest neighbor principle as a new training data set.Then,a K-nearest neighbor algorithm(OKNN)with optimized weight was proposed,and the combined weight of each index were given to these similar samples.Finally,an example was given to verify the proposed new algorithm according to the optimized weight coefficient.The results showed that the proposed OKNN combined filling method was superior to the classical KNN algorithm and the weighted KNN algorithm distance filling method.
作者 文雯 冯长焕 侯世君 Wen Wen;Feng Changhuan;Hou Shijun(College of Mathematic and Information,China West Normal University,Nanchong 637009,China)
出处 《洛阳师范学院学报》 2021年第5期7-10,共4页 Journal of Luoyang Normal University
基金 大学生创新创业训练计划创新训练项目(cxcy2020153)。
关键词 K-近邻算法 缺失数据 组合填补 近邻原理 权重系数 K-nearest neighbor algorithm missing data combination fill neighbor principle weight coefficient
  • 相关文献

参考文献2

二级参考文献11

  • 1周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 2豆增发,王英强,王保保.一种基于信息增益的K-NN改进算法[J].电子科技,2006,19(12):52-56. 被引量:5
  • 3Dasarathy B V.Nearest Neighbor(NN) norms:NN pattern classification techniques[M].LasAlamitos, California : IEEE Computer Society Press, 1991.
  • 4Agrawal R, Imielinski T, Swami A. 1Vraning Association Rules between Sets of It:ns in Large Databases[C]. Proceedings of the ACM SIGMOD Conference on Management of Data, Washington, IX], USA, 1993.
  • 5Ragel A, Cremilleux B. Treatment of Missing Values for Association Rules[C]. Proceedings of the Second Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-98), Melbourne, Australia, Lecture Notes in Artificial Intelligence 1394, Berlin: Springer, 1998.
  • 6Ragel A, Crmlleux It MVC-A Reprocessing Method to : with IVEssing Values[J]. Knowledge-Based System Journal,1999, 12 (5/6).
  • 7Shen J J, Chang C C, Li Y C. Combined Association Rules for Dealing with Missing Values[J]. Journal of Information Science, 2007, 33(4).
  • 8Leila Ben Othman, Sadok Ben Yahia. GBARMVC: Generic Basis of Association Rules Based Approach for Missing Values Completion[J]. International Journal of Computing :" Information Sciences, 2011, 9(1) .
  • 9Leila Ben Othman, Sadok Ben Yahia. Yet Another Approach for Completing Missing Values[C]. Springer-Verlag Berlin Heidelberg, CLA 2006, LNAI 4923, 2008.
  • 10Pang-Ning Ta, Michael Steinbach, Vipin Kumar.数据挖掘导论[M].2版.范明,范宏建,等,译.北京:人民邮电出版社,2011.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部