摘要
Infrared metamaterial absorber(MMA) based on metal-insulator-metal(MIM) configuration with flexible design,perfect and selective absorption,has attracted much attention recently for passive radiative cooling applications.To cool objects passively,broadband infrared absorption(i.e.8-14 μm) is desirable to emit thermal energy through atmosphere window.We present a novel MMA composed of multilayer MIM resonators periodically arranged on a PbTe/MgF_(2) bilayer substrate.Verified by the rigorous coup led-wave analysis method,the proposed MMA shows a relative bandwidth of about 45%(from 8.3 to 13.1 μm with the absorption intensity over 0.8).The broadband absorption performs stably over a wide incident angle range(below 50°) and predicts 12 K cooling below ambient temperature at nighttime.Compared with the previous passive radiative coolers,our design gets rid of the continuous metal substrate and provides an almost ideal transparency window(close to 100%)for millimeter waves over 1 mm.The structure is expected to have potential applications in thermal control of integrated devices,where millimeter wave signal compatibility is also required.
作者
Yan-Ning Liu
Xiao-Long Weng
Peng Zhang
Wen-Xin Li
Yu Gong
Li Zhang
Tian-Cheng Han
Pei-Heng Zhou
Long-Jiang Deng
刘彦宁;翁小龙;张澎;李文新;宫禹;张丽;韩天成;周佩珩;邓龙江(National Engineering Research Center of Electromagnetic Radiation Control Materials,University of Electronic Science and Technology of China,Chengdu 611731,China;Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education,University of Electronic Science and Technology of China,Chengdu 611731,China;Shenyang Aircraft Design and Research Institute,Shenyang 110035,China)
基金
Supported by the National Natural Science Foundation of China(Grant Nos.52022018 and 52021001)
the Program for Changjiang Scholars and Innovative Research Team in University。