摘要
研究了在一个有界光滑的区域上存在两种不同的流体的结构稳定性问题.假设这两种流体的控制方程分别为粘性依赖于温度的Brinkman-Forchheimer方程与Darcy方程,并且Brinkman-Forchheimer型流体的内部存在一个热源或者散热器.运用能量分析的方法和微分不等式技术,获得了方程的解对热源的连续依赖性.
The paper study the structural stability of two different kinds of fluids in a bounded smooth region.Assuming their governing equations are the temperature-dependent Brinkman-Forchheimer equation and Darcy equation and there is a heat source or sink in the interior of Brinkman-Forchheimer type fluid.By using the energy analysis method and the differential inequality technique,the continuous dependence of the solution of the equations on the heat source and the viscosity coefficient is obtained.
作者
李远飞
郭战伟
LI YUANFEI;GUO ZHANWEI(Huashang College Guangdong University of Finance&Economics,Guangzhou 511300,China;Guangdong Institute of comnunications technology,Guangzhou 510507,China)
出处
《应用数学学报》
CSCD
北大核心
2021年第2期226-237,共12页
Acta Mathematicae Applicatae Sinica
基金
广东省普通高校创新团队项目(2020WCXTD008)。