期刊文献+

城市计算中的显露模式分析方法研究

Research of Emerging Pattern Analysis Method Based on Urban Computing
下载PDF
导出
摘要 城市计算中可以利用显露模式分析方法挖掘数据中的显露模式,但城市数据往往是多源异构数据,难于集成在一张表中分析。论文设计了一种显露模式分析算法,并针对城市数据多源异构问题,如兴趣点数据,GPS数据,公交数据等分别提出了不同转换方法,使得城市数据可以有效融合在一张表中以便于使用显露模式分析。实验表明该方法对城市计算中的显露模式分析是有效的。 Emerging pattern analysis method can be used to mine the emerging pattern in urban data,but urban data is multi-source heterogeneous data,it is difficult to integrate into a single table for analysis.In this paper,an algorithm for analysis of emerging pattern is designed and multi-source heterogeneous urban data,such as POI(Point of Interest)data,GPS data and bus data,different conversion methods are proposed,so that urban data can be effectively integrated into a table for emerging pattern analysis.Experiments show that this method is effective for the analysis of emerging pattern in urban computing.
作者 肖凡智 张雨竹 尹耀宽 许建潮 刘钢 XIAO Fanzhi;ZHANG Yuzhu;YIN Yaokuan;XU Jianchao;LIU Gang(College of Computer Science and Engineering,Changchun University of Technology,Changchun 130012)
出处 《计算机与数字工程》 2021年第4期766-770,775,共6页 Computer & Digital Engineering
基金 吉林省科技厅重大科技项目(编号:20160203010GX) 吉林省发改委产业创新专项基金项目(编号:20170505MA2)资助。
关键词 显露模式 城市计算 多源异构数据 emerging pattern urban computing multi-source heterogeneous data
  • 相关文献

参考文献7

二级参考文献118

  • 1范明,刘孟旭,赵红领.一种基于基本显露模式的分类算法[J].计算机科学,2004,31(11):211-214. 被引量:11
  • 2赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究[J].复杂系统与复杂性科学,2005,2(2):45-48. 被引量:45
  • 3陆化普,石冶.Complexity of Public Transport Networks[J].Tsinghua Science and Technology,2007,12(2):204-213. 被引量:13
  • 4[1]B Babcock,S Babu,M Datar,et al.Models and issues in data stream systems.In:Proc of ACM Symp on Principles of Database Systems (PODS-02).New York:ACM Press,2002
  • 5[2]G Widmer,M Kubat.Learning in the presence of concept drift and hidden contexts.Machine Learning,1996,23(1):69-101
  • 6[3]G Hulten,L Spencer,P Domingos.Mining time-changing data streams.SIGKDD,San Francisco,CA,2001
  • 7[4]J Gama,R Rocha,P Medas.Accurate decision trees for mining high-speed data streams.In:Proc of the 9th ACM SIGKDD Int'l Conf on in Knowledge Discovery and Data Mining.New York:ACM Press,2003
  • 8[5]H Wang,W Fan,P S Yu,et al.Mining concept-drifting data streams using ensemble classifiers.In:Proc of the Int'l Conf on Knowledge Discovery and Data Mining (SIGKDD03).New York:ACM Press,2003
  • 9[6]R A Jacobs.Methods for combining experts' probability assessments.Neural Computation,1995.7:867-888
  • 10[7]G Dong,X Zhang,L Wong,et al.CAEP:Classification by aggregating emerging patterns.The 2nd Int'l Conf on Discovery Science (DS'99),Tokyo,Japan,1999

共引文献336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部