期刊文献+

有源降噪中电声器件频率响应的仿真研究 被引量:1

Simulation Study on Frequency Response of Electroacoustic Devices in Active Noise Control
下载PDF
导出
摘要 为了研究有源降噪系统仿真时电声器件的频率响应对次级通路建模的影响,使用有限脉冲响应(Finite Impulse Response, FIR)滤波器模拟电声器件的频率响应曲线,并以FxLMS(Filtered-x Least Mean Square)算法为例,研究扬声器与传声器的频率响应对系统降噪效果的影响。仿真结果表明,在实际降噪应用中电声器件陡峭的频率响应曲线会对输入信号幅值造成衰减,产生幅值失配的现象,使控制系统的实际降噪量远小于理想电声器件模型,并通过不同情况下的降噪效果分析了电声器件对系统降噪量的影响。该分析方法为深入进行有源降噪系统研究提供了一种新的次级通道模型分析思路。 In order to reduce the influence of the frequency response of the electroacoustic device on the modeling of secondary path during Active Noise Control(ANC) system simulation, the frequency response curve of the electroacoustic device was simulated by using a Finite Impulse Response(FIR) filter. And the Filtered-x Least Mean Square(FxLMS) algorithm was taken as an example to study the effect of the frequency response of electroacoustic devices on the noise reduction of the ANC system. The results show that in the actual noise reduction applications, the steep frequency response curve of the electroacoustic device can attenuate the amplitude of input signal, resulting in a phenomenon of amplitude mismatch, which makes the actual noise reduction of the control system much smaller than the ideal electroacoustic device model. The effects of electroacoustic devices on the noise reduction system were analyzed based on denoising effects of different situations. This analytical method can provide a new analytical procedure for secondary path modeling for further research of active noise control system.
作者 何彦兴 曾庆宁 HE Yan-xing;ZENG Qing-ning(School of Information and Communication,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处 《计算机仿真》 北大核心 2021年第4期168-171,471,共5页 Computer Simulation
基金 广西自然科学基金(2016GXNSFDA380018) 国家自然科学基金项目(61461011) “认知无线电与信息处理”教育部重点实验室主任基金(CRKL160107,CRKL170108) 桂林电子科技大学研究生教育创新计划资助项目(2019YCXS034,2019YCXS031)。
关键词 有源噪声控制 电声器件 频率响应 滤波-X最小均方算法 Active noise control Electroacoustic device Frequency response characteristic FxLMS algorithm
  • 相关文献

参考文献3

二级参考文献30

  • 1Quaegebeur N, Chaigne A. Nonlinear vibrations of loudspeaker-like structures [J]. Journal of Sound and Vibration, 2008, 309: 178-196.
  • 2Snyder S D, Hansen C H. The effect of transfer function estimation errors on the filtered-X LMS algorithm [J]. IEEE Trans. on Signal Processing, 1994, 42(4):950-953.
  • 3Zhang Q Z, Gan W S, Zhou Y L. Adaptive recurrent fuzzy neural networks for active noise control [J]. Journal of Sound and Vibration, 2006, 296: 935-948.
  • 4Das D P, Panda G. Active mitigation of nonlinear noise processes using a novel filtered-x LMS algorithm [J]. IEEE Trans. Speech Audio Proeess, 2004, 12 (3): 313-322.
  • 5ReddyEP, Das D P, Prabhu K M M. Fast exact multichannel FSLMS algorithm for active noise control [J]. Signal Processing, 2009, 89: 952-956.
  • 6Zhao H, Zeng X, Zhang J. Adaptive reduced feed- back FLNN filter for active control of nonlinear noise processes[J]. Signal Processing, 2010,90 : 834-847.
  • 7Ravauda R, Lemarquand G, Roussela T. Time-varying nonlinear modeling of electrodynamic loudspeakers [J]. Applied Acoustics, 2009, 70: 450-458.
  • 8Sankar D, Thomas T. Nonlinear modeling of loud-speaker using adaptive second order Volterra filters [A]. IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES) [C], 2007 : 87-92.
  • 9Klippel W. Loudspeaker nonlinearities - cause, parameters, symptoms[J]. Journal of the Audio Engineering Society, 2006, 54:907-939.
  • 10Zhou D, DeBrunner V. Efficient adaptive nonlinear filters for nonlinear active noise control [J]. IEEE Transactions on Circuits and Systems: Regular Papers, 2007, 54:669-681.

共引文献17

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部