摘要
针对中央空调系统非线性、大滞后的特点以及难以建立精确模型的问题,提出基于无模型强化学习的中央空调系统温度控制方法。针对Energyplus和Matlab通信问题,应用MLE+工具实现两者的联合仿真。将强化学习算法与基准启停策略和模型预测控制策略进行比较,方法能够在保证舒适度的前提下使得空调系统能耗最低。得出结论强化学习方法能取得较好的控制效果。
Aiming at the nonlinear and large hysteresis characteristics of HVAC system and the difficulty of establishing accurate models, a temperature control method for HVAC system based on model-free reinforcement learning is proposed. For the Energyplus and Matlab communication problems, the MLE+tool was used to implement the joint simulation of the two. The reinforcement learning algorithm was compared with the benchmark start-stop strategy and the model predictive control strategy, and the method can minimize the energy consumption of the air-conditioning system under the premise of ensuring comfort. It was concluded that the reinforcement learning method can achieve better control effects.
作者
李晓彤
崔承刚
杨宁
陈辉
LI Xiao-tong;CUI Cheng-gang;YANG Ning;CHEN Hui(Shanghai University of Electric Power,Shanghai 200082,China)
出处
《计算机仿真》
北大核心
2021年第4期198-202,224,共6页
Computer Simulation
基金
国家自然科学基金青年科学基金项目(51607111)。
关键词
中央空调
强化学习
控制策略
联合仿真
HVAC
Reinforcement learning
Control strategy
Co-simulation