期刊文献+

变结构三阶一致性无人机编队控制 被引量:3

Variable Structure Formation Control of Quadrotors Based on Third-Order Consensus Algorithm
下载PDF
导出
摘要 对多无人机的编队飞行控制问题进行了研究,解决了多无人机编队构成并稳定飞行和编队内某无人机失事情况下其它无人机仍保持队形稳定飞行的问题。首先,基于图论设计编队通讯网络。其次,基于三阶一致性理论设计编队控制器,通过积分得到每架无人机的目标位置和速度。在编队内无人机失事情况下,设计变结构通讯网络,并给出编队通讯结构变化规则。仿真结果表明,上述控制方案能够保证多无人机迅速构成编队并稳定飞行,在编队内无人机失事情况下,能够保证其它无人机依旧按目标路径和编队形状稳定飞行。 The research of formation flight control of quadrotors was studied to solve the problem that the quadrotors form and maintain while one quadrotor in the formation crashed. First, the graph theory was used to design a formation communication network. Then, the third-order consensus theory was used to design the formation controller. The target position and velocity of each quadrotor would be obtained through integration. In the case of one quadrotor crashed in the formation, the variable structure communication network was designed. The rules for changing the communication network were given. The simulation results show that the control method above can ensure quadrotors form quickly and the formation maintains well while one quadrotor in the formation crashed.
作者 王明华 胡士强 WANG Ming-hua;HU Shi-qiang(School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《计算机仿真》 北大核心 2021年第4期302-305,360,共5页 Computer Simulation
基金 国家自然科学基金(61773262) 航空科学基金(20142057006)。
关键词 无人机 编队控制 一致性理论 变结构 Quadrotor Formation flight control Consensus theory Variable structure
  • 相关文献

参考文献4

二级参考文献30

  • 1俞辉,王永骥,程磊.基于有向网络的智能群体群集运动控制[J].控制理论与应用,2007,24(1):79-83. 被引量:18
  • 2DERAFA L, BENALLEGUE A, FRIDMAN L. Super twisting con- trol algorithm for the attitude tracking of a four rotors UAV [J]. Jour-nal of the Franklin Institute, 2012, 349(2): 685 - 699.
  • 3KARIMODDINI A, LIN H, CHEN B M. Hybrid three-dimensional formation control for unmanned helicopters [J]. Automatica, 2013, 49(2): 424 - 433.
  • 4XIE F, ZHANG X, FIERRO R. Autopilot-based nonlinear UAV for- mation controller with extremum-seeking [C] //Proceedings of the 44th IEEE Conference on Decision and Control. Sevilla: IEEE, 2005, 4933 - 4938.
  • 5DUAN H B, LIU S Q. Non-linear dual-mode receding horizon control for multiple unmanned air vehicles formation flight based on chaotic particle swarm optimization [J]. lET Control Theory & Applications, 2010, 4(11): 2565 - 2578.
  • 6PENG Z, LIU J. On new UAV flight control system based on Kalman & PID [C]//Proceedings of the 2nd International Conference on In- telligent Control and Information Processing. Harbin: IEEE, 2011, 819 - 823.
  • 7TANNER H G, JADBABAIE A, PAPPAS G J. Stable flocking of mo- bile agents, Part I: fixed topology [C] //Proceedings of the 42nd IEEE Conference on Decision and Control. Maui Hawaii: IEEE, 2003:201 - 2015.
  • 8TANNER H G, JADBABAIE A, PAPPAS G J. Stable flocking of mo- bile agents, Part II: dynamic topology [C] //Proceedings of the 42nd IEEE Conference on Decision and Control. Maui Hawaii: IEEE, 2003:2016 - 2021.
  • 9GUILFORD T, ROBERTS S, BIRO D, et al. Positional entropy dur- ing pigeon homing II: navigational interpretation of Bayesian latent state models [J]. Journal of Theoretical Biology, 2004, 227(1): 25 - 38.
  • 10MORA C V, DAVISON M, WILD J M, et al. Magneto reception and its trigeminal mediation in the homing pigeon [J]. Nature, 2004, 432(7016): 508 - 511.

共引文献102

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部