摘要
针对具有时序性的信号的分析和建模,主流的RNN、LSTM由于反馈连接的影响,在学习效率和稳定上有所不足。本文基于标准的前馈神经网络,借鉴滤波器中的抽头延迟线结构,提出一种改进的前馈序列记忆神经网络FSMN(cFSMN)和深层cFSMN(Deep-cFSMN),实现时序的音视频信号快速建模,减少了反馈连接,具有更高的学习速率和更好的稳定性。
For the analysis and modeling of sequential signals,the mainstream RNN and LSTM have some shortcomings in learning efficiency and stability due to the influence of feedback connection.Based on the standard feedforward neural network and the takeout delay line structure in the filter,this paper proposes an improved feedforward sequential memory neural network fsmn(cfsmn)and deep cfsmn(deep cfsmn)to achieve sequential sound.Video signal fast modeling reduces feedback connection,has higher learning speed and better stability.
作者
梁翀
刘迪
浦正国
张彬彬
LIANG Chong;LIU Di;PU Zheng-guo;ZHANG Bin-bin(Anhui Jiyuan Software Co.,Ltd.,Hefei 230088,China;State Grid Information and Communication Industry Group Co.,Ltd.,Beijing 102211,China)
出处
《山东农业大学学报(自然科学版)》
北大核心
2021年第2期313-315,共3页
Journal of Shandong Agricultural University:Natural Science Edition
基金
国家电网有限公司总部科技项目:基于机器学习的智能文档自动编制关键技术研究与应用(No.52110418002X)。
关键词
前馈序列记忆神经网络
改进方法
Feedforward sequential memory network
improved method