期刊文献+

一种基于前馈序列记忆神经网络的改进方法 被引量:2

An Improved Method Based on Feedforward Sequence Memory Neural Network
下载PDF
导出
摘要 针对具有时序性的信号的分析和建模,主流的RNN、LSTM由于反馈连接的影响,在学习效率和稳定上有所不足。本文基于标准的前馈神经网络,借鉴滤波器中的抽头延迟线结构,提出一种改进的前馈序列记忆神经网络FSMN(cFSMN)和深层cFSMN(Deep-cFSMN),实现时序的音视频信号快速建模,减少了反馈连接,具有更高的学习速率和更好的稳定性。 For the analysis and modeling of sequential signals,the mainstream RNN and LSTM have some shortcomings in learning efficiency and stability due to the influence of feedback connection.Based on the standard feedforward neural network and the takeout delay line structure in the filter,this paper proposes an improved feedforward sequential memory neural network fsmn(cfsmn)and deep cfsmn(deep cfsmn)to achieve sequential sound.Video signal fast modeling reduces feedback connection,has higher learning speed and better stability.
作者 梁翀 刘迪 浦正国 张彬彬 LIANG Chong;LIU Di;PU Zheng-guo;ZHANG Bin-bin(Anhui Jiyuan Software Co.,Ltd.,Hefei 230088,China;State Grid Information and Communication Industry Group Co.,Ltd.,Beijing 102211,China)
出处 《山东农业大学学报(自然科学版)》 北大核心 2021年第2期313-315,共3页 Journal of Shandong Agricultural University:Natural Science Edition
基金 国家电网有限公司总部科技项目:基于机器学习的智能文档自动编制关键技术研究与应用(No.52110418002X)。
关键词 前馈序列记忆神经网络 改进方法 Feedforward sequential memory network improved method
  • 相关文献

参考文献3

二级参考文献18

  • 1张仰森,曹元大,俞士汶.语言模型复杂度度量与汉语熵的估算[J].小型微型计算机系统,2006,27(10):1931-1934. 被引量:7
  • 2黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:249
  • 3赵海,揭春雨.基于有效子串标注的中文分词[J].中文信息学报,2007,21(5):8-13. 被引量:26
  • 4XU Wei, AlexRudnicky. Can artificial neural networks learn lan- guage modelsT[C]// Proceedings of International Conference on Spoken Language Processing. 2000.
  • 5Bengio Yoshua. A neural probabilisfic language model[J]. Journal of Machine Learning Research, 2003, 10(3): 1137-1155.
  • 6Tom'aVs Mikolov. Statistical language models based on neural networks[D]. Brno University of Technology, Czech Republic, 2012.
  • 7Mikolov T, Karafi'at M, Burget L, et al. Recurrent neural network based language model[C]// Proceedings of Interspeech, 2010: 1045-1048.
  • 8Kombrink S, Mikolov T, Karafrat M, et al. Recurrent neural network based language modeling in meeting recognition[C]// Proceedings of Interspeech, 2011: 2877-2880.
  • 9Mikolov T, Kombrink S, Burget L, et al. Extensions of recurrent neural network language model[C]// Proceedings of ICASSP, 2011: 5528-5531.
  • 10Mikolov T, Deoras A, Kombrink S, et al. Empirical evaluation and combination of advanced language modeling techniques[C]//Pro- ceedings of ]nterspeech, 2011: 605-608.

共引文献56

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部